
Chapitre 1 – Suites, limites et récurrence 

1. Rappels sur les suites 

1a. Suites explicites et récurrentes 

Exemple 1 
Pour tout    ,     est strictement positif, donc      est bien définie (on ne 

 risque pas de diviser par zéro).
Ses quatre premiers termes sont : 

   
   

   
          

   

   
 

 

 
          

   

   
 

 

 
          

   

   
 

 

 
 

 

 
   

Notez que le 1er terme est v , le terme d’indice 0, et le 4ème terme est v . 

Exemple 2 
Si    , alors               . 
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Exemple 1 Le premier terme est déjà donné, c’est     . 

   
     

    
 

     

   
 

 

  
    

   
     

    
 

        

    
 

  

  
 

 

 
 

Exemple 2 Quand on calcule w , on remplace le n de la formule de récurrence par 
 . Par conséquent, tous les n sont à remplacer par   .
                 
De même, quand on calcule w , on applique en fait la formule pour n    .
                  . 
               . 

Exemple 3 Pour calculer un terme, on a donc besoin ici des deux termes 
 précédents.

              .  
              . 
              . 
              . 
Plusieurs notions reliées à la suite de Fibonacci font de bons sujets de grand oral. 

Exemple 4 
•                   . 
Pour calculer a , on a besoin de connaître b  .
•                      . 
•                      
•                         . 
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1b. Suites arithmétiques et géométriques 

 
Exemple 1  
               ;            et           . 
Pour    , on peut repartir de    et ajouter 10 fois 5 :              . 
C’est l’intérêt de la formule du terme général ci-après. 

Exemple 2  
                  et                     . 
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Exemple 1               ;                . 
Pour   , on repart de    qu’on multiplie 5 fois par –2, ce qui revient à le 
multiplier par        :                       . 

 À nouveau, c’est pour ce genre de calcul qu’on a la formule du terme général.

Exemple 2  On se rappelle que multiplier par 0,5 revient à diviser par 2.
                                      
                                                         

Exemple 3  a. Augmenter une quantité de    revient à la multiplier par 

  
 

   
     .                     et                    . 

b. La suite      est géométrique car pour passer d’un terme au suivant, on 
multiplie ce terme par     , qui est donc la raison. Les suites géométriques 

 servent souvent pour modéliser des augmentations/diminutions en pourcentage.

Exemple 4  1.              .  
Pour calculer   , on a besoin de connaître                 .  
Ainsi,                  . 

2.  Soit    . Calculons      : Cette méthode servira souvent par la suite !
                                                
Or cette dernière quantité se factorise par     :                      
Ainsi,      est géométrique, de raison      . 
3. D’après la formule du terme général,       

        . 
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Exemple 1 Nous verrons des formules pour calculer ces sommes très rapidement. 
                                          
               
                           
                    

Exemple 2  
              . 
Or                                               
Donc                   . 

Exemple 3  
• On modélise le salaire de l’entreprise A par la suite arithmétique      de 
premier terme           et de raison        .  
On a alors                         . C’est le salaire de la dixième année, 
on en a besoin pour la formule de la somme d’une suite arithmétique. 
Ainsi, la somme des salaires des dix premières années est : 

∑   

 

   

    
     

 
          

 

charly-piva.fr



• De même, on modélise le salaire de l’entreprise B par la suite géométrique      
de premier terme           et de raison       .  
La somme des salaires des dix premières années est : 

∑   

 

   

        
        

      
           

L’entreprise A est la plus avantageuse. Il faut en fait 27 ans pour que l’entreprise B 
batte enfin l’entreprise A grâce à sa croissance exponentielle. L’écart se creuse 
ensuite, comme on peut le voir sur ce graphique. 
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1c. Sens de variation 

 
Exemple 1 

• Soit    .         (             )          

                    
      
Or   est positif, donc      l’est aussi, et      est croissante. 
• Soit    . Notez que si on remplace n par  n    ,  n     devient alors  n     .

        
 

   
 

 

   
 

             

          
 

         

          

 
  

          
 

Or le numérateur de cette fraction est négatif, mais son dénominateur est positif. 
        est donc négatif et la suite      est décroissante. 

Exemple 2  Pour     : Cette propriété sert peu et donne des calculs désagréables.

    

  
 

     
        

   
    

 

   
    
   
    

 
   

    
 

    

   
 

        

        
 

Or dans cette dernière fraction, le numérateur est inférieur au dénominateur, 
donc cette fraction est inférieure à   et donc      est décroissante. 
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Exemple 3 
•      est une suite arithmétique de raison   , qui est négatif. 
Donc elle est décroissante. 
•      est une suite géométrique de premier terme positif et de raison    , qui 
est comprise entre   et  . Donc elle est décroissante. 
• La suite définie pour     par      est géométrique de premier terme 
positif et de raison  , qui est supérieure à  . Donc elle est croissante. 
La suite      définie par       est son opposée. Donc      est décroissante. 
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2. Raisonnement par récurrence 

2a. Principe de récurrence 
Propriété : Si une propriété est vraie pour un entier   ,  
et s’il est prouvé que lorsqu’elle est vraie pour un entier   supérieur ou 
égal à   , alors elle est vraie pour l’entier    , 
alors la propriété est vraie pour tout entier   supérieur ou égal à   . 
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2b. Méthode 

 

Attention ! Dans la rédaction, 𝑷 𝒏  ou bien 𝑃 𝑛     ou 𝑃    ne représentent pas 
des nombres. Ils représentent des énoncés logiques, comme par exemple 𝑃    qui 
représente « la propriété pour 𝑛    ». 

Exemple 1 

Soit    . Montrons                       pour tout    . 

Initialisation : Montrons                         
On calcule les deux membres de l’inégalité :  
•        , car tout nombre à la puissance   vaut  . 
•        . 
Ainsi,      est vraie. 

Hérédité : Soit    . Supposons que                       est vraie. 

Montrons que                               est alors vraie. 
D’après l’hypothèse de récurrence : 
            
On part de cette inégalité, et on essaye progressivement d’aboutir à    𝑎 𝑛   .
   𝑎  étant positif, on peut multiplier les deux membres de l’inégalité par    𝑎  .
                         
Rappel de formules sur les puissances : pour tout 𝑥   , 𝑥𝑛  𝑥  𝑥𝑛   .
                     
                       
On a presque trouvé ce que l’on cherchait, mais il reste ce 𝑛𝑎  qui nous embête… 
Mais un carré étant toujours positif, 𝑛𝑎   , donc le    𝑛    𝑎  𝑛𝑎  qu’on a 
trouvé est supérieur au    𝑛    𝑎  .
                   
On a montré que        était vraie. 
Conclusion : pour tout     et tout    ,            . 
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Exemple 2 Ici, l’initialisation se fait pour n    : cette propriété n’a pas de sens 
pour n    .

Montrons                 
      

 
   pour tout     non nul. 

Initialisation : Montrons           
      

 
   

Or 
      

 
 

 

 
  . Donc      est vraie. 

Hérédité : Soit    . Supposons que                 
      

 
   est vraie. 

Montrons que                         
          

 
  est alors vraie. 

D’après l’hypothèse de récurrence : 
              

 
      

 
       

 On peut mettre cette expression au même dénominateur :

 
      

 
 

      

 
 

 
             

 
 

Pour terminer, on factorise par  n     .

 
          

 
 

On a montré que        était vraie :               
          

 
. 

Conclusion : pour tout    ,         
      

 
. 
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2c. Établir des formules 

 
Exemple 1  
Ici, il faut bien différencier 𝐮𝐧  𝟐  𝟑𝐧  𝟏, qui est la propriété à démontrer, de 
𝐮𝐧 𝟏  𝟑𝐮𝐧  𝟐, qui est la formule de récurrence que l’on peut utiliser. 

Montrons                     pour tout    . 

Initialisation : Montrons                       
Or               , qui est bien égal à   . 
Ainsi,      est vraie. 

Hérédité : Soit    . Supposons que                      est vraie. 

Montrons que                           est alors vraie. 
Calculons     . D’après la formule de récurrence :  
           
Or d’après l’hypothèse de récurrence : 
                 
On développe le  . Attention, la parenthèse ne contient que deux termes, qui sont 
   n et  . On ne distribue pas le facteur commun à   et à  n   !
                  
On utilise le fait qu’une suite de multiplications peut se réécrire dans l’ordre de 

 notre choix.
                  
Enfin, on utilise les règles de calculs sur les puissances :    n      n   n   

              
On a montré que        était vraie. 
Conclusion : pour tout    ,          . 
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Exemple 2 

Montrons                    
            

 
  pour tout     . 

Initialisation : Montrons            
             

 
    

Or  
             

 
 

     

 
 

 

 
  . Donc      est vraie. 

Hérédité : Soit    .  

Supposons que                    
            

 
    est vraie. 

Il est plus difficile ici de remplacer tous les n par des  n    . 
n    devient alors  n      , soit n   . 
Quand à  n   , il devient   n        n       n    .

Montrons                       n      
                

 
  . 

Calculons avec l’hypothèse de récurrence : 
            n      

 
            

 
  n      

 
            

 
 

  n     

 
 

On peut additionner les deux fractions et factoriser par  n    . 

 
                    

 
 

 
     (              )

 
 

On essaye de développer le contenu de la grosse parenthèse. 

 
                 

 
 

 
               

 
 

Zut. On voulait trouver 
 n    n     n   

 
 . On a 

 n     n2  n   

 
 . 

Une autre technique peut nous aider : essayer de repartir de  n      n     et 
montrer que cette expression est égale au   n   n     qu’on a trouvé. 

Or pour n    ,                                 . 

Ainsi,             n      
                

 
 et        est vraie. 

Conclusion : pour tout    ,            
            

 
 . 
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2d. Inégalités 
 

 

 

 

 

 

 

 

 
 

Exemple 1 Montrons             n     pour tout    . 

Initialisation : Montrons                 . 
On a      et            . Donc       et      est vraie. 

Hérédité : Soit    . Supposons que             n      est vraie. 

Montrons que                 n     est alors vraie. 
On part de l’hypothèse de récurrence : 
    n   
Ici, on va essayer d’appliquer les opérations qui permettent de passer de vn à vn  , 
une par une, dans l’ordre des priorités opératoires. 
Si on fait de même pour vn  , on trouvera vn  . 
           
               
           
On fait bien attention à retrouver, à la fin, le sens de l’inégalité initiale (pour rappel, 
multiplier/diviser par un nombre négatif ou changer le signe des membres change 
le sens des inégalités). 
On a montré que        était vraie. 
Conclusion : pour tout    ,     n   et la suite      est décroissante. 

 

Exemple 2 Montrons                          pour tout    . 

Initialisation : Montrons                        . 

On a      , et    √     √       . 

Ainsi,              et      est vraie. 

Hérédité : Soit    . Supposons                           

Montrons que                               est alors vraie.  
charly-piva.fr



D’après l’hypothèse de récurrence : 
               
                        
                    

 √    √       √     √    

car la fonction racine carrée est croissante 

 √              √   

Zut, on voulait retrouver     et   , mais on a trouvé √    et √   à la place. 

Cela dit, on peut calculer √    : si on trouve un résultat plus grand que    , cela 
signifie que un   est plus grand qu’un nombre plus grand que 2,5. On aura bien 

    un   comme on voulait. Idem pour √    : il faudrait qu’il soit inférieur à 10.

Or √             et √          . 
On en déduit que                  et        est vraie. 
Conclusion : pour tout    ,               . 

Exemple 3 a. Déterminons la dérivée de la fonction  , qui est de la forme 
 

 
. 

Pour     , on pose           et          . 
On a alors         et        . Ainsi : 

      
                

       
 

            

       
 

  

       
 

Or 40 est positif, et         est positif car il s’agit d’un carré. 
La dérivée de   est donc positive sur         .   est donc croissante. 
b. La suite      vérifie la formule de récurrence           . 

Montrons                     pour tout     . 

Initialisation : Montrons                   . 

     et    
     

     
 

  

  
. On a bien          et      est vraie. 

Hérédité : Soit     . Supposons que                      est vraie. 

Montrons que                         est alors vraie. 
D’après l’hypothèse de récurrence :           
Or   est croissante : on peut l’appliquer à tous les membres de l’inégalité. 
                   

Mais      
     

     
 

 

 
  ,              et           . 

Ainsi,            .        est vraie. 
Conclusion : pour tout     ,          . 
Quand, comme ici, on a affaire à une suite dont la formule de récurrence fait 
intervenir une fonction croissante, il est infiniment plus facile d’appliquer cette 
fonction plutôt que d’essayer d’appliquer les opérations une par une comme dans 

 les exemples 1 et 2.
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2e. Autres usages  

 
Exemple 1 Montrons          n         u              pour tout    . 
Initialisation : pour    ,           , qui est bien un multiple de  . 

Hérédité : soit    , supposons          n         u             . 

Montrons que            n          u              est vraie. 
Par hypothèse de récurrence, il existe alors     tel que        . 
En multipliant cette égalité par  , on obtient :   
             
             
               
               
                
On a montré que        est bien multiple de  .        est vraie. 
Conclusion : pour tout    ,  n         u           . 

Exemple 2  
a.                                 . 
Ce polynôme du second degré a pour discriminant                    

Il admet deux racines réelles,    
      √ 

   
 

   √ 

 
   √  

et    
      √ 

   
 

   √ 

 
   √  

De plus, le coefficient en    de         est positif. 
Ainsi           est positif sur                 et négatif sur        . 

b. Montrons                 pour tout     supérieur à 4. 
Initialisation : pour    ,               et          . 
     est vraie. 

Hérédité : soir    , supposons                . 

Montrons                        . On part de l’hypothèse de récurrence : 
                        

Or d’après la question a, pour     √  (ce qui est le cas ici),            est 
positif : cela signifie que     est supérieur à       . 
Ainsi,             et        est vraie. 
Conclusion : pour    , on a bien      . 
Exemple 3 Cet exemple permet de voir en quoi l’initialisation est indispensable : si 
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 on l’ignore, on peut démontrer des propriétés qui sont manifestement fausses.

a. Hérédité : soit    , supposons          n      u             . 

Montrons que            n        u              est vraie. 
Par hypothèse de récurrence, il existe alors     tel que      . 
En multipliant par  , on trouve                     
On vient de montrer que      est également multiple de  .        est vraie. 
b. Pourtant, aucune puissance de   n’est en réalité multiple de   :     ,     , 
    ,     … 
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3. Notion de limite 
Soit      une suite définie sur  . 

3a. Limite infinie 
Définition :      tend vers    quand   tend vers   , 
si pour tout réel  , l’intervalle        contient tous les termes de la 
suite à partir d’un certain rang. On dit que      diverge, et on note : 

   
    

        

 
• L’intervalle         contient tous les termes de la suite à partir du rang  . En 
particulier,      . 
• L’intervalle          contient tous les termes de la suite à partir du rang   . 
En particulier,        . 
• L’intervalle            contient tous les termes de la suite à partir du rang   . 
En particulier,          . 

  

charly-piva.fr



Définition :      tend vers    quand   tend vers   , 
si pour tout réel  , l’intervalle        contient tous les termes de la 
suite à partir d’un certain rang. 
On dit que      diverge, et on note : 

   
    

        

De gauche à droite et de haut en bas :    ;    ;    ; pas de limite, et…    ? 
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3b. Limite finie 
Définition :      tend vers un réel   quand   tend vers   , 
si tout intervalle ouvert contenant  , contient tous les termes de la suite 
à partir d’un certain rang. 
On dit que      converge vers  , et on note : 

   
    

       

 

• L’intervalle           contient tous les termes de la suite à partir du rang  . 
• L’intervalle           contient tous les termes de la suite à partir du rang  . 
• L’intervalle             contient tous les termes de la suite à partir du rang   . 
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3c. Premières conjectures 

 

Exemple 1  On représente les suites à la calculatrice.
a.    b.    c.    d.    e.    f.    g.    
Exemple 2 C’est une façon alambiquée de calculer la limite d’une suite, nous 

 verrons des méthodes plus faciles ensuite.

a.                                  √    

Ainsi, en prenant    comme la valeur approchée par excès de √   , pour tout 
    , on a bien      . 
b. On a montré à la question a que pour tout réel  , il existe un rang    tel qu’à 
partir de ce rang, tous les termes de la suite sont dans l’intervalle       . 
Cela correspond à la définition du cours, donc     

    
      

Exemple 3 1. La calculatrice nous permet de conjecturer que     
    

    . 

2.     est strictement positif, donc        pour tout    , ainsi     . 
3a.       3b.       3c.      

Propriété : si une suite est convergente, alors sa limite est unique. 

 

Exemple 1 Cette suite alterne entre    et  . Elle ne peut pas avoir de limite. 

Exemple 2 Cette suite prend différentes valeurs sans se rapprocher d’une valeur 
en particulier. Elle ne peut pas avoir de limite. 

Exemple 3 Bien que cette suite alterne entre valeurs positives et négatives, ses 
valeurs se rapprochent de   quand     . Sa limite est  . 
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4. Calculer des limites  

4a. Suites usuelles 

      
    

     

     

      

    
(  entier positif   ) 

   

      

√     

 

 
 

   
(0 par valeurs positives) 

 

    

(  entier positif   ) 

   

  n       ou            pas de limite 
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4b. Opérations sur les limites 
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Exemple 1 À chaque fois, on se réfère aux limites des suites usuelles, puis au 
tableau pour connaître la limite d’une somme, d’un produit ou d’un quotient. 

a.     
    

      et     
    

 
 

  . Par somme,     
    

     . 

b.  •     
    

      et     
    

√    . Par produit,     
    

  √    . 

   • De plus,     
    

      . 

Par somme,     
    

     . 

c.   •     
    

     

   •     
    

      et     
    

   . Par somme,     
    

       . 

Par quotient,     
    

     . 

d.      
    

      ;    
    

     et     
    

     . Par somme,    
    

     . 

e.     
    

 

  
   et     

    
       . Par somme,     

    
      . 

f.  •     
    

       

   •     
    

    et     
    

      . Par somme,     
    

       . 

Par quotient,     
    

     . 

g.   •     
    

     

   •     
    

    et     
    

 
 

   . Par somme,     
    

  
 
 

  . 

Par quotient,     
    

    . 
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Exemple 2 La rédaction de ces exemples détaille la raison pour laquelle les formes 
 sont indéterminées, mais on n’a en général pas besoin de détailler ça.

a.          
    
    

      et    
    

      . Par somme, c’est une forme indéterminée… 

Mais               . 
    
    

     et    
    

      . Par produit,     
    

     . 

   
   
   

  

    
    

       ;    
    

       . Par quotient, c’est une forme indéterminée. 

Mais    
   
   

 
    

 (   
 )

 
  

   
 

 

    
    

       et    
    

  
 
 

   . Par quotient,     
    

     . 

b.         
    
    

       et    
    

       . Par somme, c’est une forme indéterminée… 

Mais                 . 
    
    

      et    
    

       . Par produit,     
    

          . 

         
    
    

      ;    
    

       et     
    

   .  

Par somme, c’est une forme indéterminée. 

Mais           (  
 
 

 
 

  
) 

•     
    

       

•     
    

    ;     
    

 
 
 

   ;    
    

 

  
  . Par somme,     

    
(  

 
 

 
 

  
)   . 

Par produit,     
    

          . 

c.    
    
    

 est une forme indéterminée par quotient. 

Mais    
    
    

 
 (   

 )

 (   
 )

 
   

 

   
 

 

    
    

  
 
 

   et      
    

  
 
 

  . Par quotient,     
    

   
 
 

 . 

   
  

    
 est une forme indéterminée par quotient. 

Mais    
  

    
 

   

 (
 
   )

 
 

 
   

 

    
    

    et      
    

 
 

     . Par quotient,     
    

    . 
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4c. Suites géométriques 
 

 

 

 

 

 

 

 

a. La suite      a pour expression       (
 
 
)
 

. 

Or     
    

      et d’après la propriété,     
    

(
 
 
)
 

    car  
 
 

  . 

Par produit,     
    

     . 

b. La suite      a pour expression             . 
Or     

    
    et d’après la propriété,     

    
          car          . 

Par produit,     
    

    . 

c. La suite      a pour expression            . 
Or d’après la propriété,     

    
      n’existe pas. Donc     

    
   n’existe pas.  

d.    
    

        et d’après la propriété,     
    

(
 
 
)
 

   car    
 
 

  . 

Par produit,     
    

    . 
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5. Théorèmes sur les limites 

5a. Comparaison et gendarmes 

 
La technique consiste à encadrer la partie de la suite qui n’a pas de limite, 
généralement un cosinus, un sinus ou     n, puis de reconstruire la suite. 
Exemple 1  
a. Ici, on devine que la limite de la suite sera    , donc on essaye de la majorer.
Pour tout    ,            
                    
                             
                   , or     

    
          .  

D’après le théorème de comparaison,     
    

     . 

b. La limite de la suite sera   , donc on essaye de la minorer. 
Pour tout    ,               
               On a changé le signe, le sens de l’encadrement change. 

 √    √          √    

 √       √   , or     
    

√      .  

D’après le théorème de comparaison,     
    

     . 
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Exemple 2 
a. Pour tout    ,      n       
       n       
                 n            
Or comme     est compris entre    et  ,     

    
           

    
        . 

D’après le théorème des gendarmes,     
    

    . 

b. Pour tout    ,        n    

 
 

√ 
  

      n

√ 
  

 

√ 
 

    
 

√ 
    

      n

√ 
    

 

√ 
 

    
 

√ 
       

 

√ 
 

Or      
    

   
 

√ 
     

    
   

 

√ 
   . 

D’après le théorème des gendarmes,     
    

     . 

Exemple 3 
a. Le théorème des gendarmes ne s’applique que quand les deux suites qui 
bornent la suite      ont la même limite, ce qui n’est pas le cas ici. 

Par exemple, si      est définie par       
 

 
 et      par      

 

 
 

et      la suite définie par         , on a bien les propriétés demandées dans 
l’énoncé. Pourtant      ne converge même pas. L’affirmation est fausse. 
b. Comme      est croissante, on a       pour tout    . 
De même, comme      est décroissante, on a       pour tout    . 
Ainsi, pour tout    , comme         , on a bien         . 
L’affirmation est vraie. 
 

 

 

charly-piva.fr



5b. Suites monotones 

 

Exemple 1  

a. Montrons           un      pour tout    . 

Initialisation : Montrons           u      . 
On a     . Donc      est vraie. 

Hérédité : Soit    . Supposons que                    est vraie. 

Montrons que                        est vraie. 
D’après l’hypothèse de récurrence : 
          
                          
                        
                
Or       , donc on a bien          et        est vraie. 
Conclusion : pour tout    ,   un    
b.  On peut essayer de le faire sans récurrence.
Pour    ,                               
Or d’après a,     , donc           , ainsi            . 
Ainsi         est positif et      est croissante. 
c. La suite      est croissante d’après b et majorée par   d’après a. 
Donc elle converge vers une limite  . 

Exemple 2 

a. Montrons                     pour tout    . 

Initialisation : Montrons                   . 

Or      et    √    √     . Ainsi        .      est vraie. 

Hérédité : Soit    . Supposons que                      est vraie. 

Montrons que                          est vraie. 
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D’après l’hypothèse de récurrence : 
             
                    

 √  √       √       car la fonction racine carrée est croissante. 

 √            

Or   √ , donc               et        est vraie. 

Conclusion : pour tout    ,          . 
b. La suite      est donc décroissante et minorée par  .  
Donc elle converge vers une limite  . 
 

  

charly-piva.fr



5c. Point fixe 

 

Exemple 1  

a.             et sa dérivée est          . 

Cette dérivée est une fonction affine, positive sur          puis négative sur 

        . Donc   est croissante sur         puis décroissante sur        . 

b. Montrons                       pour tout    . 

Initialisation : Montrons                    . 

On a        et                                     . 

On a bien           et      est vraie. 

Hérédité : Soit    . Supposons que                          est vraie. 

Montrons que                            est vraie. 

D’après l’hypothèse de récurrence : 

            

                      car   est croissante sur        . 

               car                                  . 

Ainsi,        est vraie. 

Conclusion : pour tout    ,            . 

La suite      est donc croissante et majorée par    .  

Elle converge vers une limite  . 

c. La suite      est convergente et définie par une relation de récurrence 

           où   est une fonction continue. D’après le théorème du point fixe : 
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Cette équation produit nul a deux solutions :     et             . 

La limite est donc   ou    . Or, la limite ne peut pas être , car      est croissante 

et son premier terme est       . 

Ainsi,       et     
    

      . 

Exemple 2 

a. Montrons                     pour tout    . 

Initialisation : Montrons                    . 

Or        et                      . Ainsi         .      est vraie. 

Hérédité : Soit    . Supposons que                       est vraie. 

Montrons que                           est vraie. 

D’après l’hypothèse de récurrence : 

                

                              

                                        

                

Or       , donc              et        est vraie. 

Conclusion : pour tout    ,          . 

b. La suite      est donc croissante et majorée par  .  

Donc elle converge vers une limite  . Elle est définie par une relation de 

récurrence            où                est une fonction continue. 

D’après le théorème du point fixe : 

       

             

              

             

   
   

    
      

Ainsi,     
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