Chapitre 1 - Suites, limites et récurrence

1. Rappels sur les suites

1a. Suites explicites et récurrentes

Définition : une suite est une fonction de N dans R.

Notation : pour n € N, I'image de n par une suite u se note u(n), mais plus souvent u,.
On dit qu'u,, est un terme de la suite, n est appelée l'indice. La suite compléete est notée (u,).

Exemple 1 Soit (v,,) définie sur N par :
2n

=n+1
Justifier que (v,,) est bien définie, et calculer ses 4 premiers termes.

Un

Remarque : pour n € N, si u,, représente un terme d’une suite,
U, 1 représente le terme suivant, et u,,_; le terme précédent.

Exemple 2 soit (w,,) définie sur N parw,, =4n —7.0nposen =6.0na:w, =

Wner = Wn-1 =
w,+1= w,—1=
Exemple 1

Pour toutn € N, n + 1 est strictement positif, donc (v,,) est bien définie (on ne

risque pas de diviser par zéro).

Ses quatre premiers termes sont :
2x0 2x1 2

_2x2 4 2% 3
) 3

= =0; v, = = 1; v, = ; U3 = =
0+1 Y141 2 2142 T 1+3
Notez que le 1er terme est v, le terme d’indice 0, et le 4eme terme est vs.

Vo

Exemple 2

Sin=6,alorsw,, =wg =4%x6—-7=17.

Wpi1 = Wep1 =W, =4X7—-7=21 Wy 1 =Wg1 =Ws=4X5—-7=13
w,+1=wg+1=17+7 =18 w,—1=w;—-1=17-7 =16
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Définition : Une suite est définie par récurrence si chaque terme est défini en fonction du précédent.

. fE 2vp—2
Exemple 1 Soit (v,,) définie sur N parv, = 2 etv,;, = > n_3
n
Calculer ses trois premiers termes.
Exemple 2 Soit (w,,) définie sur N par w, = 3 et w,,;; = —w,, + n. Calculer w; ,w, et ws.

Exemple 3 (suite récurrente d’ordre 2) Soit (u,,) définiesur Nparuy =1, u; =1, et w40 = Upypq + Uy
Calculer les six premiers termes. (u,,) est la suite de Fibonacci.

Exemple 4 (deux suites récurrentes)
= 5 b = 1
On définit deux suites (a,) et (by,) par: {ao t{ 0

e
An+1 = 20, + by by+y = 0,8a, — by
Calculer a,, a,, b, et b,.

Exemple 1 Le premier terme est déja donné, c’est vy = 2.
_2yy—2 2%x2-2 2

= — =_2

i=, 3" 2.3 -
2 —2 2% (-2)-2 -6 6
V2=, 37 223 5 5

Exemple 2 Quand on calcule w4, on remplace le n de la formule de récurrence par
0. Par conséquent, tous les n sont a remplacer par 0.
wi=-wy+0=-3+0=-3

De méme, quand on calcule w,, on applique en fait la formule pour n = 1.
wy=—-w;+1=—-(-3)+1=4.

W3=—-w,+2=—-4+4+2=2.

Exemple 3 Pour calculer un terme, on a donc besoin ici des deux termes
précédents.

U, =u +uyuy=1+1=2.

Uz =u, +u; =2+1=3.

Uy =uz+u, =3+2=5.

U =uUy +uz3 =5+3=8.

Plusieurs notions reliées a la suite de Fibonacci font de bons sujets de grand oral.

Exemple 4

ea; =2ay+by=2x%x5+1=11.

Pour calculer a,, on a besoin de connaitre b;.
eb; =08ay,—by=08x5—-1=3.

ea, =2a,+b; =2x11+ 3 = 25.

eb, =08a, —b;=08%x11—-3=5,8.
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Afficher une suite sous forme de graphique ou tableau (Numworks)

Dans I’écran d’accueil

, choisir la fonction « Suites » .

Appuyer sur OK pour « Ajouter une suite », puis chaisir le type de suite : explicite ou récurrente.

¢ Pour une suite explicite, taper ensuite I'expression en fonction de n.

La lettre n est affichée avec la touche

Ensuite, validez puis utilisez la croix directionnelle bas pour entrer u,.

u
n

Ajouter une suite

3
—+
ol

Ajouter une suite

u x2+3|
n

Une fois la suite entrée, utilisez la croix directionnelle haut pour afficher un graphique ou un tableau.

Afficher une suite sous forme de tableau (Casio)
Suites explicites

Appuyer sur la touche | MENU ] Appuyer sur @ (SET) pour régler

la table.
et choisir i R la%e Table n
O

[+ eg
Récurrence Start:0

Appuyer sur @

Suites récurrentes

Appuyer sur la touche | MENU ] a

ans 8
An+B

et choisir Récurrence

Appuyer sur \g =/ (SET) pour régler
la table et entrer la valeur du premier
terme de chaque suite.

Pour obtenir la table, appuyer sur {

Appuyer sur @ pour choisir le type

pour choisir le type ﬁ n+1 ant1 _ bnei
de suite. Appuyer sur EXE J pour valider. deisufte. Chiolsir \gg [a,,.,) 3 .
F1:an=An+B Entrer I'expression de g, ,, en fonction 1 3 5
F2:an+1=Aan+Bn+C P btenir la tabl @ N 2 2 ]
F3:@n+2=Aan+1 +Ban+- - - our obtenir ana e, appat:yer sur * dea,, en utilisant la touche 5 i R
| — 17 pour n, poura,.
1 3 Récurrence
Entrer I'expression de a_en fonction de 2 S an+1@2an+1, gre==g
n 3 7 bn+1 Ebn +n+3 =1
(A

n, en utilisant la touche @ pour n. .

Récurrence

an@2n+1 {—)

Afficher une suite sous forme de tableau (TI)

Suites explicites

Appuyer sur la touche .

Choisir le mode suite ou seq.

Pour régler la table, appuyer

sur déf table ([ 2nse | [1eeswe )

= CONFIG TRBLE
Appuyer sur la touche [ o 1

DébutTbl=0
aTbl=1
Choisir type suite (n) Indent : Demande

Dépndte : [ENi¥Xs] Demande

Pour nmin : entrer l'indice du premier

terme. Pour obtenir la table,

appuyer sur [ 2nde | (s

—J

Pour u(n) : entrer l'expression de u,,

en fonction de n a l'aide de la touche atn)

1
3
5
7

WN -

XT0n

‘ TYPE: SUITE(n+1) SUITE(n+2)
nMin=0

wu(n)B2n+1
u(o)ae
u(l)=

Suites récurrentes

ou v utiliser les touches | 2 |, | # |ou,

Mettre la calculatrice
en mode suite.

Appuyer sur la touche | ' |
Choisir type suite (n+ 1) et pour taperu sur table [orapne

) pour régler la table, appuyer sur déf

table [;

Pour obtenir la table, appuyer

Le .

TYPE: SUITE(n) EVFEIERSE] SUITE(n+2)
nMin=0

uln+1)B2u(n)+1

u(0)|1

u(l)=

wwvin+1)Bv(n)+n+3

v(0)B82

v(l)=
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1b. Suites arithmétiques et géométriques

Définition : soit € R. Une suite (u,,) arithmétique de raison r est une suite définie par récurrence
tellequepourn €N, u,,, 1 =u, +r
Exemple 1 : soit (v,,) arithmétique de premier terme v, = 7 et de raison 5.

Onav, = Uy = vy = etvyy =

Propriété (formule du terme général) : soit (u,,) arithmétique de raison r. Alors pour tout n € N, u,, = u, + nr.
Exemple 2 : soit (w,,) arithmétique de premier terme w, = 3 et de raison —2.
Onaw,, = et wysq =

Les suites arithmétiques se représentent graphiquement par des points alignés.
On parle de croissance ou décroissance linéaire.

Exemple 1
Vy=v9+5=7+4+5=12;v,=124+5=17etv3 =17+ 5 = 22.

Pour v, on peut repartir de v, et ajouter 10 fois5: v, =7+ 10 X 5 = 57.
C’est l'intérét de la formule du terme général ci-apres.

Exemple 2
Wyo =34+ 20X (—2) = —57 etwzgy = 3 + 350 X (—2) = —697.
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Définition : soit ¢ € R. Une suite (u,,) géométrique de raison q est une suite définie par récurrence
telle que pourn € N, u, ;1 = qu,,
Exemple 1 soit (17,,) géométrique de premier terme v, = 3 et de raison - 2.

Ona v, = Uy = etvg =

Propriété (formule du terme général) : soit (u,,) géométrique de raison q. Alors pour toutn € N, u,, = u, x g
Exemple 2 soit (w,,) de premier terme w, = 24 et de raison —0,5.0n a

wy = Wy = Wg = etw,, =

Exemple 3 Une ville comptait 5 000 habitants en 2017. Chaque année, le nombre d’habitants augmente de 8 %
par rapport a I'année précédente. On note u, le nombre d’habitants a I'année 2017 + n.
a. Donner la valeur de u; et u,.

b. Justifier que la suite (u,,) est géométrique, et préciser sa raison.

Les suites géométriques de raison positive se représentent graphiquement par des points placés comme pour une
fonction exponentielle. On parle de croissance ou décroissance exponentielle.

Méthode : pour montrer qu’une suite est géométrique, il suffit de factoriser v, sous la forme qv,,.

=2
Exemple 4 Soit (uy,), suite définie par {uo et (v,) définie par v, = 6 — uy,.

Upyq = 0,7u, + 1,8
1. Calculer v, et vy.
2. Montrer que (v,) est une suite géométrique, dont on précisera la raison.

3. En déduire I'expression de v,, en fonction de n.

Exemple1v, = vy, X (—2) = —-6;v, = (—6) X (—2) = 12.

Pour vg, on repart de v, qu'on multiplie 5 fois par -2, ce qui revient a le
multiplier par (—=2)° :vs = 3 x (—=2)° = 3 x (—32) = —96.

A nouveau, c’est pour ce genre de calcul qu’on a la formule du terme général,

Exemple 2 On se rappelle que multiplier par 0,5 revient a diviser par 2.
w; = 24 x (=0,5) = —12 w, =24 x (=052 =6
ws = 24 X (=0,5)°> = —-0,75 wyo =24 X (—0,5)2° ~ 0,000 023 ~ 2,3 x 107>

Exemple 3 a. Augmenter une quantité de 8% revient a la multiplier par

1+—=1,08.u; = 5000 X 1,08 = 5400 etu, = 5400 x 1,08 = 5 832.

b. La suite (u,) est géométrique car pour passer d’'un terme au suivant, on
multiplie ce terme par 1, 08, qui est donc la raison. Les suites géométriques
servent souvent pour modéliser des augmentations/diminutions en pourcentage.

Exemple4 1.vy =6 —-uy; =6 -2 =4.

Pour calculer v, on a besoin de connaitre u; = 0,7uy + 1,8 = 3,2.

Ainsi, vy =6—-u; =6 —3,2=2,8.

2. Cette méthode servira souvent par la suite ! Soit n € N. Calculons v, :
Vpg1 =6 —Upy; =6—(0,7u, +1,8) =6—-0,7u, — 1,8 =42 - 0,7u,

Or cette derniére quantité se factorise par 0,7 : v,,.; = 0,7(6 —u,) =0, 7v,
Ainsi, (v,) est géométrique, de raison g = 0,7.

3. D’apres la formule du terme général, v,, = v,q"™ = 6 X 0, 7™
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Définition : Le symbole Y représente une somme de plusieurs nombres.

Exemple 1 Calculer les sommes suivantes :

3n?

N e

4

A= Z(2k b 1) B =
k=0 n=1

Ugp — 10

Uy = 21, — 3 On pose pour tout n entier naturel :

Exemple 2 Soit u,, suite définie par: {

Calculer S;.

Propriété : - Si (u,) est une suite arithmétique, la somme des termes de u, a u, vaut :
n

Ug tu
ZukZ(n+1) 02 =

k=0
- Si (vy,) est une suite géométrique de raison ¢, la somme des termes de v, a v, vaut :
n

n+1

Z —
Vi = Vg

1 —_
k=0 1
Dans les deux formules, (n + 1) correspond au nombre de termes ajoutés : de uy a uy,, ilya (n + 1) termes.

Exemple 3 Un candidat se voit proposer deux offres d’emploi

* Entreprise A : son salaire annuel est de 22 000€ Ia 1% année, puis il augmente de 1 000€ chaque année.
* Entreprise B : son salaire annuel est de 20 000€ la 1°™ année, puis il augmente de 4% chaque année.
Quel est |e salaire le plus avantageux au bout de dix ans ?

Exemple 1 Nous verrons des formules pour calculer ces sommes tres rapidement.
A=2x0+1)+2x1+1)+2x24+1)+2x3+1)+(2%x4+1)
A=1+34+5+74+9 =25

B=3x1*4+3%x2*+3x3°+3x4*+3x5?
B=3+12+27+48+75=165

Exemple 2

S3 = uy +uy +u, + us.

Oru,=10;u; =2xXx10-3=17;u, =2%X17—-3 =31;u3 =2%x31 -3 =59
Donc S3 =10+ 17 + 31 + 59 = 117.

Exemple 3

e On modélise le salaire de I’entreprise A par la suite arithmétique (a,,) de
premier terme ay, = 22 000 et de raisonr = 1 000.

Onaalors ag = 22 000+ 1000 X9 = 31 000. C’est le salaire de la dixieme année,
on en a besoin pour la formule de la somme d’une suite arithmétique.

Ainsi, la somme des salaires des dix premieres années est :
9

aop + aq
Zak = 10><T= 265 000€
k=0
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e De méme, on modélise le salaire de I'entreprise B par la suite géométrique (b,,)
de premier terme b, = 20 000 et de raison g = 1,04.
La somme des salaires des dix premieres années est :

. — 1,0410
= X —m——=
;bk 20 000 - 104 240 122€

L’entreprise A est la plus avantageuse. Il faut en fait 27 ans pour que l'entreprise B
batte enfin 'entreprise A grdce a sa croissance exponentielle. L’écart se creuse
ensuite, comme on peut le voir sur ce graphique.

1400000
entreprise B

1200000
entreprise A
1000000
800000
600000

400000

200000

0 5 10 15 20 25 30 35
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1c. Sens de variation

Définitions : une suite (u,) est:
- croissante si pourtoutn € N, u,,,1 = u, (strictement croissante si pour toutn € N, u,,,; > u,)
- décroissante si pourtoutn € N, u,,,; < u, (strictement décroissante si pour tout n € N, u,,,; < u,)

Propriété : une suite (u,,) est croissante si et seulement si pourtoutn € N, u,;1 —u, = 0

(décroissante si et seulement si pour toutn € N, u,,; —u, <0)

Exemple 1 Etudier le sens de variation de la suite (u,,) définie pour n € N par u,, = n* + 2n

4
et de la suite (v,,) définie pourn € Nparv, =——
() p parv, =——

Propriété : Soit (u,,) une suite dont tous les termes sont strictement positifs.

. : . Un+1 .. . u
(u,) est croissante si et seulement si pour toutn € N, > 1 (décroissante ssi pour toutn € N, —* < 1)
un Un
= - - - - P - n_3
Exemple 2 Etudier le sens de variation de la suite (u,,) définie pour n > 3 paru,, = P
Propriétés: - Une suite arithmétique est croissante si et seulement si sa raison est positive.

- Une suite géomeétrique dont le premier terme est positif est :
croissante si et seulement si sa raison est supérieure a 1,
décroissante si sa raison est comprise entre 0 et 1.

Exemple 3 Etudier le sens de variation des suites (a,), (b,) et (¢,) définies sur N par :
a, =5—2n b, =7,1x0,6" c, =—3X5"

Exemple 1

e Soitn EN. Uy —up = (n+ 12+ 2(n+ 1)) — (n? + 2n)

=n*+2n+1+2n+2-n*2-2n

=2n+3

Or n est positif, donc 2n + 3 'est aussi, et (u,,) est croissante.

e Soitn € N. Notez que si on remplace n par (n + 1), (n + 1) devient alors (n + 2).
4 = 4n+1)—-4(n+2) 4n+4-4n-8

n+2 ZLH_l . m+2)(n+1) (n+2)(n+1)

T (n+2)(n+1)

Or le numérateur de cette fraction est négatif, mais son dénominateur est positif.

Vn4+1 — Uy est donc négatif et la suite (v;,,) est décroissante.

Un+1 — Vn

Exemple 2 Cette propriété sert peu et donne des calculs désagréables. Pour n > 3 :
Un+1  2(m+1)+1 _ 2n+3 _ n—2

2n+1 2n2-3n-2
X =

Uy, n-3  n—-3 2n+3 n-3 2n2-3n-9
2n+1 2n+1
Or dans cette derniere fraction, le numérateur est inférieur au dénominateur,

donc cette fraction est inférieure a 1 et donc (u,,) est décroissante.
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Exemple 3

* (a,) est une suite arithmétique de raison —2, qui est négatif.

Donc elle est décroissante.

e (b,) est une suite géométrique de premier terme positif et de raison 0,6, qui
est comprise entre 0 et 1. Donc elle est décroissante.

e La suite définie pour n € N par 3 X 5" est géométrique de premier terme
positif et de raison 5, qui est supérieure a 1. Donc elle est croissante.

La suite (c,,) définie par —3 X 5™ est son opposée. Donc (c,,) est décroissante.
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2. Raisonnement par récurrence

2a. Principe de récurrence
Propriété : Si une propriété est vraie pour un entier n,,
et s'il est prouvé que lorsqu’elle est vraie pour un entier n supérieur ou

égal a n, alors elle est vraie pour I'entier n + 1,
alors la propriété est vraie pour tout entier n supérieur ou égal a n,,.

En mathématiques, de nombreuses propriétés dépendent de la valeur d’'un nombre entier, souvent noté n.

n(n+1)
2

Par exemple : « pour tout n € N, la somme des nombres de 1 a n est égale a »

On peut le vérifier facilement pour une valeur de n donnée :

7X8
sin=7,onca|cule1—l—2—|—3—|—4—|—5—|—6—|—7=28,quiestbienégalé7.

Mais comment le prouver pour toute valeur den ?

Le raisonnement par récurrence est une méethode de démonstration, probablement utilisée
par des mathématiciens anciens tels qu’Euclide.

Mais le premier a I'avoir formalisée est Blaise Pascal, au XVII® siécle, afin de justifier les
formules qui nous permettront de remplir le triangle de Pascal, plus tard dans I'année.

On peut s’en servir pour montrer qu'il y a une infinité de nombres premiers, pour étudier des
suites... en fait, dés qu’on doit démontrer une propriété avec des nombres entiers, la
récurrence se révéle trés utile.

Il repose sur un principe simple : si la propriété est vraie pour n = 0, et que si sa
véracité pour un entier 11 implique sa véracité pour I'entier (n + 1), alors Ia
propriété est vraie pour tous les entiers.

On peut comparer ce principe a un enchainement de dominos : si le premier
domino (de rang 0) tombe, et si on est sir que chague domino fera tomber le
domino suivant, alors tous les dominos tomberont.
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2b. Méthode

Soit P(n) une propriété a montrer, dépendant d’un entier n.
n(n+1)

Par exemple, P(n) : « la somme des nombres de 1 a n est égale a »

1. Initialisation : on montre que la propriété est vraie au premier rang.

C’est souvent trés facile, mais a ne pas oublier !

2. Hérédité : on se donne un entier n € N, on suppose que la propriété est vraie a unrangn,
et on montre qu’elle est alors vraie au rang suivant (n + 1).

En langage mathématique, cela s’écrit P(n) = P(n + 1)

3. Conclusion : on en déduit que la propriété est toujours vraie.

Exemple 1 Montrer I'inégalité de Bernoulli : pour tout a € R strictement positif et pour toutn € N,

1+a)"=1+na
n(n+1)

Exemple 2 Montrer que pour tout n € N non nul, la somme des nombres de 1 a n est égale a

Attention ! Dans la rédaction, P(n) ou bien P(n + 1) ou P(0) ne représentent pas
des nombres. IIs représentent des énoncés logiques, comme par exemple P(0) qui
représente « la propriété pour n = 0 ».

Exemple 1

Soit a € R. Montrons P(n) : « (1 + a)™ = 1 + na » pour toutn € N.

Initialisation : Montrons P(0) :« (1 +a)®° > 1+ 0 X a »

On calcule les deux membres de I'inégalité :

e(1+ a)® = 1, car tout nombre a la puissance 0 vaut 1.

el14+0Xa=1.

Ainsi, P(0) est vraie.

Hérédité : Soit n € N. Supposons que P(n) : « (1 + a)™ = 1 + na » est vraie.
Montrons que P(n + 1) : « (1 + a)™®! > 1 + (n + 1)a » est alors vraie.

D’apres I'hypothese de récurrence :

1+a)"=14+na

On part de cette inégalité, et on essaye progressivement d’aboutir a (1 + a)™*1,

(1 + a) étant positif, on peut multiplier les deux membres de l'inégalité par (1 + a).
S (1+a)"(1+a)=2 1A +na)(1+a)

Rappel de formules sur les puissances : pour tout x € R, x™ X x = x
© 1+a)*>1+na+a+ na?

S+ >14+ M+ 1Da+na?

On a presque trouvé ce que l'on cherchait, mais il reste ce na® qui nous embéte...
Mais un carré étant toujours positif, na®> = 0, doncle 1 + (n + 1)a + na® qu'on a
trouvé est supérieuraul + (n + 1)a.

S0+ >1+ N+ 1a

On a montré que P(n + 1) était vraie.

Conclusion : pourtouta > Oettoutn € N, (1 +a)* = 1 + na.

n+1
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Exemple 2 Ici, l'initialisation se fait pour n = 1 : cette propriété n’a pas de sens
pourn = 0.

Montrons P(n) :«1+ 2+ -4+ n = n(n;l) » pour tout n € N non nul.

Initialisation : Montrons P(1) :« 1 = HGD) o

Or 1(12+1) = g = 1. Donc P(1) est vraie.

Hérédité : Soit n € N. Supposons que P(n) :«1+2+ -+ n = n(nz+1) » est vraie.
(n+1)(n+2)

Montronsque Pn+1):«1+2+-+n+(n+1) = » est alors vraie.

D’apres I'hypothése de récurrence :
1+2+-+n+(n+1)

nn+1
IRICED AR

On peut mettre cette expression au méme dénominateur :
_n(n+1)+2(n+1)

2 2

_nn+1)+2(n+1)

2
Pour terminer, on factorise par (n + 1).

_ (n+2)(n+1)
- 2

(n+1)(n+2)

On a montré que P(n + 1) étaitvraie: 1+ 2+ --+n+ (n+1) = >

Conclusion : pourtoutn € N, 1+ 2+ -4+ n = n(n;l).
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2c. Etablir des formules

Exemple 1 Soit (u,) la suite définie par u, = 3 et pourtoutn € N, u,,.; = 3u, — 2.
Montrer que pourtoutn € N, u,, =2 x 3" 4+ 1.

n(n+1)(2n+1
Exemple 2 Montrer que pour toutn € N*, 12 + 22 + ...+ n? = ( )6( )

Remarque : on aurait aussi pu écrire :

Z”: 2 Mt D@+ 1)
B 6

Exemple 1

Ici, il faut bien différencier u, = 2 X 3™ 4+ 1, qui est la propriété a démontrer, de
u,.1 = 3u, — 2, qui est la formule de récurrence que l'on peut utiliser.
Montrons P(n) :«u,, = 2 X 3" + 1 » pour toutn € N.

Initialisation : Montrons P(0) :«uy =2 x 3%+ 1 »
Or2x3%°+1=2x1+1=3,quiestbien égal a u,.

Ainsi, P(0) est vraie.

Hérédité : Soit n € N. Supposons que P(n) : «u,, = 2 X 3™ + 1 » est vraie.

Montrons que P(n + 1) : « u,4; = 2 X 3"*1 + 1 » est alors vraie.

Calculons u, ;. D’apres la formule de récurrence :

Upt1 = 3Up — 2

Or d’apres I’hypothese de récurrence :

Upyp =3(2%x3"+1) -2

On développe le 3. Attention, la parenthese ne contient que deux termes, qui sont
2 X 3" et 1. On ne distribue pas le facteur commun a 2 et a 3" !

Upp1 =3X2X3"+3X1—-2

On utilise le fait qu’une suite de multiplications peut se réécrire dans l'ordre de
notre choix.

Uy =2X3X3"+3%x1-2

Enfin, on utilise les régles de calculs sur les puissances : 3 x 3" = 31 x 30 = 3n+1
Upy = 2 X 3™ +1

On a montré que P(n + 1) était vraie.

Conclusion : pour toutn € N, u,, =2 x 3™ 4 1.
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Exemple 2

Montrons P(n) : « 1% + 2% + --- + n% = nn+DH(@2n+1)

» pour toutn € N*,

11+1DH(2%x1+1)
6 »

= 1. Donc P(1) est vraie.

Initialisation : Montrons P(1) : « 1% =
1(1+1)(2x1+1) 1x2%X3 6
r =

6 6 6
Hérédité : Soitn € N.

nn+1)(2n+1)

6
1l est plus difficile ici de remplacer tous les n par des (n + 1).

n + 1 devient alors (n + 1) + 1, soit n + 2.
Quand a 2n + 1, il devient2(n+ 1)+ 1=2n+2+1 = 2n + 3.

Montrons P(n + 1) 1«12+ 22 + .4 n?2 4+ (n+ 1)? = +tDHn+2@n+3)

6
Calculons avec I’hypothese de récurrence :
124224 -4+ n%+ (n+ 1)*
_n(n+1)(@2n+1)

Supposons que P(n) : « 12 + 2% + -+ n? = » est vraie.

: + (n+1)?
nn+1)(2n+1) 6(n+1)3?
B 6 T 6

On peut additionner les deux fractions et factoriser par (n + 1).
_nn+1DCn+1)+6(n+1)°

- 6

_(n+ 1)(n(2n +1)+6(n+ 1))

6
On essaye de développer le contenu de la grosse parenthése.

_ (m+1(@2n*+n+6n+6)

6
_ (n+1)(2n*+7n+6)

6

(n+1)(n+2)(2n+3) 7 (n+1)(2n?+7n+6)
.Ona .
6 6
Une autre technique peut nous aider : essayer de repartir de (n + 2)(2n + 3) et
montrer que cette expression est égale au (2n? + 7n + 6) qu’on a trouvé.

Zut. On voulait trouver

Orpourn € N*,(n+2)(2n+3)=2n*+3n+4n+6 =2n*+ 7n+6.

Ainsi, 12 + 2?2 + -+ n?+ (n+ 1)? = (n+1)(n-|—62)(2n+3) et P(n + 1) est vraie.
Conclusion : pour toutn € N, 12 4+ 22 + --- 4+ n? = n(n+1)6(2n+1) :
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2d. Inégalités

Exemple 1 Soit (17,) la suite définie par vy = 2 et pourtoutn € N, vy, = 213, — 6.

Montrer que la suite (v,) est strictement decroissante.

Rappel : Soient a et b deux nombres réels tels que a < b. Soit f une fonction définie sur [a; b].
* si f est strictement croissante sur [a; b], alors f(a) < f(b).
» si f est strictement décroissante sur [a; b], alors f(a) > f(b).

uo - 10
Exemple 2 Soit (u,,) la suite définie par : {
Upp1 = /U +5

Montrer que pourtoutn €E N, 2,5 < u,y; = u, = 10.

Exemple 3 a. Ftudier le sens de variation de la fonction f définie sur ] — 3; +co[ par f(x) = %
b. On considére la suite (a,, ) définie par a; = 4 et pour tout n € N non nul, a,4+; = g:"—z-;i

Montrer que pourtoutn € Nnonnul,onal < a,4; = a,.

Exemple 1 Montrons P(n) : « v, > v,,4 » pour toutn € N.
Initialisation : Montrons P(0) : « vy > v; ».

Onavy=2etv; =2X2—6 =-—2.Doncv, > v, et P(0) est vraie.
Hérédité : Soit n € N. Supposons que P(n) : « v, > v,,, » est vraie.

Montrons que P(n + 1) : « U, 41 > Vp4o » est alors vraie.

On part de I'hypothese de récurrence :

Un > Vnt1

Ici, on va essayer d’appliquer les opérations qui permettent de passer de vy, d Vy 11,
une par une, dans l'ordre des priorités opératoires.

Si on fait de méme pour v, 1, on trouvera vy, ,.

< 20, > 2V,

= 2v,—6>2v,,1 — 6

S Unt1 > Vny2

On fait bien attention a retrouver, a la fin, le sens de l'inégalité initiale (pour rappel,
multiplier/diviser par un nombre négatif ou changer le signe des membres change
le sens des inégalités).

On a montré que P(n + 1) était vraie.

Conclusion : pour toutn € N, v, > v,,4 etla suite (v,) est décroissante.

Exemple 2 Montrons P(n) : « 2,5 < uy,1 < u, < 10 » pour toutn € N,
Initialisation : Montrons P(0) : « 2,5 < u; < ug < 10 ».

Onauy =10,etu,; = \/uo +5=+15 =~ 3,87.

Ainsi, 2,5 < u; < uy < 10 et P(0) est vraie.

Hérédité : Soit n € N. Supposons P(n) : « 2,5 < U4 < u, <10 »
Montrons que P(n + 1) : « 2,5 < U9 < Uyyq < 10 » est alors vraie.
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D’apres I'hypothese de récurrence :
25<u,;1 <u, <10
©254+5<u,;;1+5<5u,+5<10+5
=75<u,;1+5<u,+5<15

& 7,5 < Jupy +5 < Ju, +5 < V15

car la fonction racine carrée est croissante
S 75 < upyr <upyp < V15
Zut, on voulait retrouver 2,5 et 10, mais on a trouvé /7,5 et V15 a la place.

Cela dit, on peut calculer \/ﬁ : si on trouve un résultat plus grand que 2,5, cela
signifie que v, est plus grand qu’un nombre plus grand que 2,5. On aura bien
2,5 < Uy, comme on voulait. Idem pour V15 : il faudrait qu'’il soit inférieur a 10.
Or./7,5 =~ 2,73 > 2,5 et V15 =~ 3,87 < 10.

On en déduit que 2,5 < uy4 5 < uyyq < 10et P(n + 1) est vraie.

Conclusion : pour toutn € N, 2,5 < u,,; <u, < 10.

Exemple 3 a. Déterminons la dérivée de la fonction f, qui est de la forme %

Pour x > —3,on pose u(x) = 7x + 1l etv(x) = 6 + 2x.
Onaalorsu’'(x) = 7etv'(x) = 2. Ainsi :
, 76+ 2x) — (7x + 1) X2 42 + 14x — 14x — 2 40
fl) = (6 + 2x)? T (6+202  (6+2x)?
Or 40 est positif, et (6 + 2x)? est positif car il s’agit d'un carré.
La dérivée de f est donc positive sur | — 3; +0o[ . f est donc croissante.
b. La suite (a,) vérifie la formule de récurrence a,,1 = f(a,).

Montrons P(n) :« 1 < a,4q < a, » pour tout n € N*.

Initialisation : Montrons P(1) :« 1 < a, < a; ».
7x4+1

a, =4eta, = =2 Onabien1 < a, < a; et P(1) estvraie.
6+2x4 14

Hérédité : Soit n € N*. Supposons que P(n) :«1 < a,,;; < a,, » est vraie.

Montrons que P(n + 1) : « 1 < a, 4, < a,4q » estalors vraie.

D’apres I'hypothese de récurrence: 1 < a,,,1 < a,

Or f est croissante : on peut I'appliquer a tous les membres de I'inégalité.

fQ) < flant1) < f(apn)

Mais (1) = 252 = £ = 1, f(@ns1) = dnsz € £(@n) = dnsa.

Ainsi, 1 < apyp < apyq- P(n + 1) est vraie.

Conclusion : pour toutn € N*, 1 < a,,.1 < a,.

Quand, comme ici, on a affaire a une suite dont la formule de récurrence fait

intervenir une fonction croissante, il est infiniment plus facile d’appliquer cette

fonction plutét que d’essayer d’appliquer les opérations une par une comme dans

les exemples 1 et 2.
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2e. Autres usages

Exemplel  Montrer que pour tout n € N, 4 divise 5™ — 1.

Exemple 2  a. Dresser le tableau de signes de 2x* — (x + 1)
b. Démontrer par récurrence que pour tout entier n > 4, on a 2" > n?

Exemple3  a. Montrer que la propriété « pour tout n € N, 2" est un multiple de 3 » est bien héréditaire.
b. Pourtant, cette propriété est-elle vraie ?

Exemple 1 Montrons P(n) : « 5" — 1 est multiple de 4 » pour tout n € N.
Initialisation : pourn = 0,5° — 1 = 1 — 1 = 0, qui est bien un multiple de 4.
Hérédité : soit n € N, supposons P(n) : « 5™ — 1 est multiple de 4 ».
Montrons que P(n + 1) : « 52t — 1 est multiple de 4 » est vraie.

Par hypothese de récurrence, il existe alors k € N tel que 5™ — 1 = 4k.
En multipliant cette égalité par 5, on obtient :

5(56"—-1) =5x%x4k

& 51 -5 =4 x5k

& 5M -1 -4 =4x%x5k

& 5™l 1=4x5k+4

& 5 —1 =4k +1)

On a montré que 5"*! — 1 est bien multiple de 4. P(n + 1) est vraie.
Conclusion : pour toutn € N, 5™ — 1 est multiple de 4.

Exemple 2

a.2x*—(x+1)2=2x2—-(x*+2x+1) =x*>—-2x — 1.

Ce polyndme du second degré a pour discriminant A = (—2)2 —4x1x (-1) =8
—(=2)—/8 _ 2—-2/2 —1-12

2X1 2

Il admet deux racines réelles, x; =

=T =142
De plus, le coefficient en x? de x> — 2x — 1 est positif.

Ainsi 2x — (x + 1)? est positif sur | — o; x;] U [x,; + o[ et négatif sur [x;; x,].
b. Montrons P(n) : « 2™ > n® » pour tout n € N supérieur a 4.
Initialisation : pourn = 4,2* =2 Xx2Xx2x2=16et4? = 4 x 4 = 16.

P(4) est vraie,.

Hérédité : soir n > 4, supposons P(n) : « 2™ > n? ».

Montrons P(n + 1) : « 21 > (n + 1)? ». On part de I’hypothése de récurrence :
2" > n? & 2 x 2" > 2n* & 2" > 2n°

Or d’apreés la question a, pour n = 1 + V2 (ce qui est le cas ici), 2n* — (n + 1)% est
positif : cela signifie que 2n* est supérieur a (n + 1)

Ainsi, 2™ > (n + 1)? et P(n + 1) est vraie.

Conclusion : pour n € N, on a bien 2™ > n?

Exemple 3 Cet exemple permet de voir en quoi l'initialisation est indispensable : si
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on l'ignore, on peut démontrer des propriétés qui sont manifestement fausses.
a. Hérédité : soitn € N, supposons P(n) : « 2™ est multiple de 3 ».

Montrons que P(n + 1) : « 22*! est multiple de 3 » est vraie.

Par hypothése de récurrence, il existe alors k € N tel que 2™ = 3k.

En multipliant par 2, on trouve 2 X 2" = 2 x 3k © 2"t! =3 x 2k

On vient de montrer que 2™*! est également multiple de 3. P(n + 1) est vraie.

b. Pourtant, aucune puissance de 2 n’est en réalité multiple de 3:2° = 1, 21 = 2,
22 =4,23 =8...
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3. Notion de limite

Soit (u,,) une suite définie sur N.

3a. Limite infinie

Définition : (u,,) tend vers +oo quand n tend vers o,
si pour tout réel 4, I'intervalle ]A4; +oo[ contient tous les termes de la
suite a partir d'un certain rang. On dit que (u,,) diverge, et on note :

lim u, = +o0

n—>+4oo

Cette définition signifie que quelque soit le nombre réel A qu’on choisisse, méme trés grand, a partir d’un
certain rang, la suite (u,,) finira par prendre des valeurs au-dessus de A et ne repassera jamais en-dessous.

Cela ne signifie pas forcément qu’elle est tout le temps croissante (méme si c’est souvent le cas),

mais la suite (u,,) finira par atteindre des valeurs infiniment grandes.
Exemple Soit la suite (u,,) définie pour tout n € N par u,, = n?:

*siA = 10, l'intervalle ]10; +o| contient tous les termes

de la suite a partir du rang ..... . En particulier, u =

¢ si A = 100, 'intervalle ]100; 4+oo[ contient tous les termes

de la suite a partir du rang ..... . En particulier, u _ =

*siA =100 000, I'intervalle ]100 000; 40| contient tous les termes

de la suite a partir du rang ..... . En particulier, u =

1107
100

90
80
70
60
50
40
30
20
10

0

[

e L%

1 234567 8 9 10

e L’'intervalle ]10; +oo[ contient tous les termes de la suite a partir du rang 4. En

particulier, u, = 16.

e L’'intervalle ]100; +oo[ contient tous les termes de la suite a partir du rang 11.

En particulier, u; = 121.

e L’'intervalle ]1 000; +oo[ contient tous les termes de la suite a partir du rang 32.

En particulier, u;, = 1 024.
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Définition : (u,) tend vers —oo quand n tend vers +o,

si pour tout réel 4, I'intervalle | — oo; A[ contient tous les termes de la
suite a partir d'un certain rang.

On dit que (u,,) diverge, et on note :

lim wu, = -
n—+oo
Exemple Conjecturer la limite des suites. W ; zj[y ,
0 lim u, =
) J I [ x 9 1| o n—+co
61 T 1001 2 3 4 5 6 . —5— -
el -1 -1 123 456 7 8
7 —1
at + - 6 -2
34 =31 5 -
-4 4
27 T -5+ 3 + PLo ¥
1 6+ 21+ 100 1 2 3 4 5 6 7 8 9
+ x . -1
: et 7t
-10 1 2 3 4 5 - : 27 lim u, =
100 1 2 3 4 5 6 7 8 9 5 1 I notoo n
' lim wu, = lim uw, = -4 T+ o+ o+ o+ o+
= n -
nl_l)I_Poo Uy n—+4oo n—too

De gauche a droite et de haut en bas : 400 ; —c0 ; +00; pas de limite, et... —4 ?
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3b. Limite finie

Définition : (u,) tend vers un réel £ quand n tend vers +oo,
si tout intervalle ouvert contenant £, contient tous les termes de la suite

a partir d'un certain rang.

On dit que (u,) converge vers £, et on note :

lim w, =%

n—+oo

Cette définition signifie que quelque soit I'amplitude £ qu’on choisisse, méme trés petite,

a partir d’un certain rang, les valeurs de la suite (u,,) seront au plus a une distance £ de la limite £ et ne s’en

éloigneront plus.

Considérons la suite (u,,) définie pour n € N* par
sin(n)

u, =

esic =0,5 l'intervalle ] ......;...... [ contient
tous les termes de la suite a partir du rang .....
esic =0,1, l'intervalle ] ...... . [ contient
tous les termes de la suite a partir du rang .....
esie = 0,05, l'intervalle]......;...... [ contient

tous les termes de la suite a partir du rang .....

+3. On peut conjecturer que : lim u, =3
n—+oo

3.8
3.7
3.6
35
34
33
3.2
31

3
29
2.8

™+

W

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Finalement, méme si on prend un & trés petit, on pourra trouver un rang a partir duguel tous les termes de la

suite sont contenus dans un intervalle | — ¢€; £ 4+ ¢| et n’en sortiront plus.

Cela implique aussi qu’on peut trouver des termes de la suite aussi proches que I'on veut de £.

e L'intervalle ]2,5; 3,5[ contient tous les termes de la suite a partir du rang 2.
e L'intervalle ]2,9; 3,1[ contient tous les termes de la suite a partir du rang 9.
e L'intervalle ]2,95; 3,05[ contient tous les termes de la suite a partir du rang 18.
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3c. Premieres conjectures

Exemple 1 Dans chaque cas, conjecturer la limite de la suite (u,,) dont on donne le terme général.
Vous pouvez utiliser |a calculatrice pour afficher les termes de la suite dans un graphique, ou regarder le tableau

de valeurs.
1 3 1 2n
a. — b. n? c.n+4 d —+7 e. Vn f. — . —
n n vn n® & n+1
Exemple 2 Soit (u,) la suite définie pour tout n € N par u,, = —n? + 5.

a. Pour tout réel A > 0, déterminer le plus petit entier naturel n,, tel que pour tout entier n = ngy, u, < —A.
b. En déduire la limite de la suite (u,,).

Exemple 3 Soit (u,,) la suite définie pour tout n € N paru,, = 2 + 0,7".

1. Conjecturer la limite de la suite(u,,)

2. Justifier que pour tout pour toutn € N, u,, > 2.

3. On admet que la suite (u,,) est strictement décroissante. A I'aide de la calculatrice, déterminer le plus petit
entier naturel n tel que : au, <21 bu,<201 cu, <2001

Exemple 1 On représente les suites a la calculatrice.

a.0 b. +o0 C. +o0 d.7 e. +oo f.0 8.2

Exemple 2 C’est une facon alambiquée de calculer la limite d’une suite, nous
verrons des méthodes plus faciles ensuite.

au, <-A© n*+5<-A n*<-A-5on*>A4+59n>vVA+5
Ainsi, en prenant ny comme la valeur approchée par exces de vA + 5, pour tout
n = ny, on a bien u,, < —A.

b. On a montré a la question a que pour tout réel 4, il existe un rang n, tel qu’a
partir de ce rang, tous les termes de la suite sont dans l'intervalle | — oo; A].

Cela correspond a la définition du cours, donc lim u, = —oo
n—-+oo

Exemple 3 1. La calculatrice nous permet de conjecturer que liE_n u, = 2.
n—-+oo

2. 0,7 est strictement positif, donc 0,7" > 0 pour toutn € N, ainsi u,, > 2.
3a.n=7 3b.n =13 3c.n =20

Propriéteé : si une suite est convergente, alors sa limite est unique.

Exemple 1 Représenter graphiquement a la calculatrice la suite (u,,) définie pour toutn € N paru,, = (—1)".
Cette suite est-elle convergente ?

Exemple 2 Méme question avec  a. la suite (v,,) définie pour tout n € N par v,, = cos(n).

b. la suite (v,,) définie pour toutn € N parw,, = 3 + (—0,4)".

Exemple 1 Cette suite alterne entre —1 et 1. Elle ne peut pas avoir de limite.

Exemple 2 Cette suite prend différentes valeurs sans se rapprocher d'une valeur
en particulier. Elle ne peut pas avoir de limite.

Exemple 3 Bien que cette suite alterne entre valeurs positives et négatives, ses

valeurs se rapprochent de 3 quand n — +oo. Sa limite est 3.
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4. Calculer des limites

4a. Suites usuelles

u, lim u,
n—+0oo
n +00
n? +00
nk +00

(k entier positif # 0)

en +OO
Vn +00
1 0t
n (0 par valeurs positives)
1 ot
nk
(k entier positif # 0)
sin(n) ou cos(n) pas de limite
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4b. Opérations sur les limites

Soient (u,) et (1,,) deux suites, et £ etf’ deux réels.

alors
si(u,) |et(v,)a alors si(uy) | et(vy) alors si(u,) | et(v,)a u,
a pour pour (un + vn) a pour a pour (un X vn) a pour pour (—)
limite ... limite ... | 3 pour limite ... limite ... limite ... | 3 pour limite ... limite ... limite ... Un
a pour limite ...
, f
Y 2 s ¥ ? ex{ 4 r#0 7
too ¢ +oo 0
£ + o0 4o £+0 +co suivant le signe de
L et +oo L0 0+ iOO suivant le
Y oo oo 0 Lo indéterminée signe de £
- (cas « 0 X o ») £+£0 0- 00 suivant le
signe de — €
+00 +00 +oo +o0 o +o indéterminée
0 0
(cas « a »)
—o0 —co —0oo —o0 —oo ) +o0 r + 00 suivant le
- signe de £ et 00
Py 2 indéterminée
+oo P indéterminée too o o too Yoo o
lcas « 00— o ))] - - (cas o — »}
[80]

* Les cas d’indétermination ne signifient pas forcément qu’il n’y a pas de limite, mais plutdt que la limite ne peut pas étre

trouvée avec ce tableau. Il faut alors exprimer la suite sous une autre forme (par exemple en factorisant).

Les explications écrites entre guillemets servent de rappel mais ne sont pas valides en mathématiques. Ne pas les écrire sur une copie.

. . . . 1 _ 1
» 0% représente les suites qui tendent vers 0 en prenant des valeurs positives (ex : u, = Z)' Idem pour 0 (ex: v, = — F]'
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Exemple 1 (Opérations sur les limites) Dans chaque cas, déterminer la limite de la suite (u,,).

2
a u, =n*+-— b. u, = =5Vyn—n3 c. U, = d u,=n*+n-5
" n " Vi U 3n+5 "
10 1 3
e.un—ﬁ— f'u"__S—Zn g.un—l—1
+ j—
n
Exemple 2 (Formes indéterminées) Dans chaque cas, déterminer la limite de la suite (u,,).
4n?
a. Déterminer la limite des suites (u,,) définie par u,, = n? — n et (v,,) définie par v,, = )

b. Calculer lim —n®+2n? et lim n?2—3n+1

n—+oo n—+oo

c. Déterminer la limite des suites (u,,) et (v,,) définies ci-dessous :

_3n+1 _ 2n
=52 Un =

1—n?

Exemple 1 A chaque fois, on se référe aux limites des suites usuelles, puis au
tableau pour connaitre la limite d’'une somme, d’un produit ou d’un quotient.

) i 1 )
a. lim n?=+wet lim == 0.Parsomme, lim U, = +oo.

n—-+oo n—-+oco N n—-+oo
b. e lim —5=-5et lim vn = +oo.Par produit, lim —5vn = —oo.
n—+oo n—+oo n—+oo
e De plus, lim —n3 = —oo,
n—4oo
Par somme, lim u, = —oo.
n—+oo
c. o lim 2=2
n—+oo
e lim 3n=+oet lim 5=5.Parsomme, lim 3n+5 = 400,
n—-4oo n—+oo n—-+oo
Par quotient, lim u, = 0.
n—+oo
d. lim n*=+o; lim n=+owet lim —5 = —5.Parsomme, lim u, = +o.
n—)+oo1 n—+oo n—4oo n—+4oo
e. lim -=0et lim —10 = —10. Par somme, lim u, = —10.
n-+ocoNn n-+oo n—-+oo
f. e Jim —1=-1
n—+oo
e |im 5=5et lim —2n = —oco.Par somme, lim 5 — 2n = —oo,
n—+oo n—+oo n—+oo
Par quotient, lim u, = 0.
n—+oco
g. ¢ lim 3=3
e 1 1
e lim 1=1et lim ==0%. Parsomme, lim 1+-=1.
n—+oo n-+oon n—+oo n
Par quotient, lim u, = 3.
n—+coo
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Exemple 2 La rédaction de ces exemples détaille la raison pour laquelle les formes
sont indéterminées, mais on n’a en général pas besoin de détailler ca.
a.u,=n>-—n

lim n? = +oet lim —n = —oo.Par somme, c’est une forme indéterminée...
n—-+oo n—-+oo
Maisu, = n* —n =n(n — 1).

lim n=+4+wet lim n—1 = +oo.Par produit, lim u, = +oo.
n-+oo n—-+oo n—+o0o

_ 4n?
T n+1
lim 4n* = 4o0; lim n+ 1 = +oo. Par quotient, c’est une forme indéterminée.
n—+oo n—+oo
Mais v. = 4n* _ nx4n _ 4n
Ton+l n(1+%) 1+1

n

Un

lim 4n = +oo0 et lim 1+ 1o 1.Par quotient, lim v, = +co.

n-+oo n—+oo n n—+oo
b. —n3 + 2n?
lim —n3 = —oet lim 2n? = 4+ . Par somme, c’est une forme indéterminée...
n—+4oo n—-4oo
Mais —n3 + 2n? = n*(—n + 2).
lim n® = +owet lim —n + 2 = —oo. Par produit, lim —n3 + 2n* = —oo.
n-+oo n—-+oo n—+oo
n?-3n+1
lim n? =+4o; lim —3n=—oet lim 1=1.
n—-+oo n—+oo n—-+o

Par somme, c’est une forme indéterminée.
: 3 1
Mais n* — 3n + 1 = n? (1——+—2)
n n
e lim n? = 4o

n—-+oo
: : 3 : 1 : 3 1
e lim 1=1; lim —==0; lim = = 0.Parsomme, lim (1 ——+—2) = 1.
n—-+co n-+oco N n-+con n—+co n n
Par produit, lim n®*—-3n+1 = 4o,
In+1
c.u, = 52_2 est une forme indéterminée par quotient.
1 1
_ 3n+1 n(3+:) 3+
Mais u, = ntl_n(3+y) 3ty

5n—2 n(5_§) B 5_%

n

lim 3+l=36t lim 5—z=5.Parquotient, lim un=%.

n—+oco n n—+oo n n—-+oo
Vn =712 est une forme indéterminée par quotient.
Mais 1. = 2n _ nX2 2
T 1-n? T i) 1o
n(z—n) Fn

: .1 : :

lim 2=2et lim ——n = —oo.Parquotient, lim v, = 0.
n—-+oo n—-+oo N n—-+oo
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4c. Suites géométriques

Propriété (suites géométriques) : Soit g un nombre réel, et (u,,) la suite définie pour n € N par u, = g™.

*siq > 1, la suite diverge vers +
* sig = 1, la suite est constante égale a 1, sa limite est donc 1.
e si—1 < q <1, lasuite converge vers 0

* sig < —1, la suite diverge (elle prend alternativement des valeurs positives et négatives)

Exemple Donner la limite des suites suivantes :
3
a. La suite (u,,) géométrique, de premier terme u, = —4 et de raison >

b. La suite (v,) géométrique, de premier terme vy = 7 et de raison —0,4

c. La suite (w,,) géométrique, de premier terme w, = 10 et de raison —2
n

d. La suite (a,) définie para, = 1,8 X (;)

: : 3\"
a. La suite (u,,) a pour expression u, = —4 X (E)
n
Or lim —4 = —4 etd’apres la propriété, lim (é) = 400 car 3 > 1.
n—-+0o no+oo \2 2
Par produit, lim wu, = —oo.
n—-4oo

b. La suite (v,,) a pour expression v, = 7 X (—0,4)™.
Or lirp 7 = 7 et d’apreés la propriété, lirp (-04)*=0car—-1<-04 < 1.
Nn—->—+0o n—>—+ 0o

Par produit, lim v, = 0.
n—+oo

c. La suite (wy,) a pour expression w,, = 10 X (—2)™.
Or d’apres la propriété, lim (—2)"™ n’existe pas. Donc lim w,, n’existe pas.

n—+oo n—+oo
: s s s 5\" 5
d. nl_l)f_{loo 1,8 = 1,8 et d’apres la propriété, nl_1>rPoo (7) =0car—-1< 5 < 1.
Par produit, lirjp a, = 0.
n—>—+00
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5. Théoremes sur les limites

5a. Comparaison et gendarmes

Théoréme (de comparaison) : Soient (u,,) et (v,) deux suites.
On suppose qu'’il existe un entier naturel ny tel que pour tout entiern = ny, ona v, < u,. Alors:
¢ Si (uy,) et (v,) convergent, lim v, < lim u,.

n—+4co n—+o0
¢ Sionaplutét lim v, = +w, alors lim u, = +w . ¢ Inversement,si lim u, = —walors lim v, = —w.
n—+oo n—+oo n—+coo n—+cwo
bu v ow
Theéoréme (des gendarmes) : Soient (u,,), (v,) et (wy,) trois suites, et £ un réel. 2T
. . . + 4+ -
On suppose qu'il existe un entier naturel ng tel que pour tout entier n = ny, 1 T4+ 4 1 n
onav, <u, <w,,etonsupposeque lim v, = lim w, ={. o 1 2 3 ] % 7 ﬁ
n—+4oo n—+oo ) =1+ +
Alors la suite (u,,) converge aussi vers £. 2+ +
Remarque : si une suite (u,,) croissante et une suite (v,,) décroissante si (vy) et (w,) tendent vers
ont leur différence u,, — v, qui tend vers 0, alors elles convergent la suite (u,,), dont les valeurs sont
vers la méme limite. On dit alors que ce sont des suites adjacentes. comprises entre celles de (v,) et et (w;,),

tend egalement vers 0.

Exemple 1 (Théoreme de comparaison)

Déterminer les limites des suites (u,,) définies par: a. u, = —n?®—n+ (=1)"  b. u,, = Vn — cos(2n)
Exemple 2 (Théoréme des gendarmes) Déterminer les e _ S5x (="
limites des suites (u,,) définies sur N* par : a. uy = 0,6%(5+sin(m)) b. u, =42 vn

Exemple 3 On consideére trois suites (u,), (v,) et (wy,) telles que pour toutn € N, u, < v, < w,.
On sait que (u,,) est croissante et converge vers —1, et que (w,,) est décroissante et converge vers 1.
Les affirmations suivantes sont-elles vraies ou fausses ? Justifier.

a. « La suite (v,,) converge vers un nombre £ appartenant a I'intervalle [—1; 1]. »

b. « Pour tout entier naturel n,onauy < v, < wy.»

La technique consiste a encadrer la partie de la suite qui n’a pas de limite,
généralement un cosinus, un sinus ou (—1)", puis de reconstruire la suite.
Exemple 1

a. Ici, on devine que la limite de la suite sera —oo, donc on essaye de la majorer.
Pourtoutn e N, -1 < (-1)" <1

S-n—-1<-n+(-D"<-n+1

S -nf-n-1<-n-n+(CD"<-n*-n+1

©-n*—-n—-1<u,<-n*-n+1or lim n*—n+1=—-ow,
n—4oo
D’apres le théoreme de comparaison, lim u, = —oo.
n—+oo

b. La limite de la suite sera +oo, donc on essaye de la minorer.

Pourtoutn € N, —1 < cos(2n) <1

& 1 = —cos(2n) = —1 On a changé le signe, le sens de I'encadrement change.
e Vn+1>+Vn—cos(2n) >Vn—-1

Svn+1>u,>vVn—1,0r lim vn—1= —oo.

n—+oo

D’apres le théoreme de comparaison, lim u, = —co.
n—-+oo

charly-piva.fr



Exemple 2

a.Pourtoutn €N, -1 <sin(n) <1

& 4<5+sin(n) <6

< 0,6"x4<0,6™"5+sin(n)) <0,6"x6

Or comme 0,6 est compris entre —1et1, lim 0,6" X4 = lim 0,6™" x 6 = 0.

n—+oo n—-+oo
D’apres le théoreme des gendarmes, liI_IT_l u, = 0.
n—>+00
b.Pourtoutn €N, -1 < (-1)" <1
5 5x (—=1)" 5
S =22 ——
v v Vn
S it map XD, 2
Vvn vnoo Vn
5 5
S42+—=>2uy, =242 ——
vn o~ " Vn
: 5 .. _ 5 _
O lim 42+ lim 42— = 42
D’apres le théoreme des gendarmes, lirJP u, = 42.
n—>—+00
Exemple 3

a. Le théoreme des gendarmes ne s’applique que quand les deux suites qui
bornent la suite (v,,) ont la méme limite, ce qui n’est pas le cas ici.

Par exemple, si (u,,) est définie par u,, = —1 — % et (w,) parw, =1+ %

et (v,) la suite définie par v,, = (—1)", on a bien les propriétés demandées dans
I’énoncé. Pourtant (v;,,) ne converge méme pas. L’affirmation est fausse.

b. Comme (u,,) est croissante, on a uy < u,, pour toutn € N.

De méme, comme (v,,) est décroissante, on a v,, < v, pour toutn € N.

Ainsi, pour toutn € N, comme u,, < v, < wy,, onabienu, < v, < w,.
L’affirmation est vraie.
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5b. Suites monotones

Définitions : Soit (u,,) une suite définie sur N.

* On dit que (u,,) est majorée s’il existe un réel M tel que pour tout entiern, u, < M

e On dit que (u,,) est minorée s'il existe un réel m tel que pour tout entier n, u,, = m

¢ On dit que (u,,) est bornée si elle est a la fois majorée et minorée (c’est-a-dire qu’elle est comprise entre deux réels)

Propriétés (théoréme de convergence monotone) :

* Toute suite croissante et majorée converge. ¢ Toute suite croissante non majorée diverge vers +co.

¢ Toute suite décroissante et minorée converge. ¢ Toute suite décoissante non minorée diverge vers —co.
Remarque : les réciproques sont fausses, par exemple une suite peut diverger vers +00 sans étre croissante.

Exemple 1 Soit (u,,) la suite définie par uy = 3 et pourtoutn € N, u,,.; = 0,75u,, +1
a. Montrer que pourtoutn € N, 3 < u,, < 4. b. Déterminer le sens de variation de la suite (u,,).
c. En déduire que la suite (u,,) est convergente.

Exemple 2 Soit (v,) la suite définie par vy = 2 et pourtoutn € N, v, ; =, /v, +1
a. Montrer que pourtoutn € N, 1 < v,,.4 = v, b. En déduire que la suite (v,,) est convergente.

Exemple 1

a. Montrons P(n) : « 3 < u, < 4 » pour toutn € N.

Initialisation : Montrons P(0) :« 3 < uy < 4 ».

On a uy = 3. Donc P(0) est vraie.

Hérédité : Soit n € N. Supposons que P(n) : « 3 < u, <4 » estvraie.

Montrons que P(n + 1) : «3 < u,,.; <4 » estvraie.

D’apres I'hypothése de récurrence :

3<u,<4

< 0,75x3<0,75xu, <0,75%x4

= 225+1<0,75u,+1<3+1

= 325<u,;1 <4

Or 3 < 3,25,donconabien3 < u,,; <4etP(n+1)estvraie.
Conclusion : pour toutn € N,3 <u, < 4

b. On peut essayer de le faire sans récurrence.

Pourn € N,u,,; —u, =0,75u, + 1 —u, = —0,25u, + 1

Or d’apres a, u,, < 4,donc —0,25u,, = —1, ainsi —0,25u,, + 1 = 0.
Ainsi u, ., — u, est positif et (u,,) est croissante.

c. La suite (u,,) est croissante d’apres b et majorée par 4 d’apres a.
Donc elle converge vers une limite #.

Exemple 2

a. Montrons P(n) : « 1 < v,,; < v, » pour toutn € N.

Initialisation : Montrons P(0) :« 1 < v; < vy ».

Orvy=2etv; =v2+1=1+/3=1,7. Ainsi 1 < v; < v,. P(0) est vraie.
Hérédité : Soit n € N. Supposons que P(n) : «1 < v,,,; < v, » estvraie.
Montrons que P(n + 1) : «1 < v,,;, < v,,,1 » est vraie.

charly-piva.fr



D’apres I'hypothese de récurrence :

1< Un+1 < Un

=1+1<v,,,+1<y,+1

=WV2 < \/vn+1 +1< \/vn + 1 car la fonction racine carrée est croissante.

= \/E S Vn+2 S Unta

Orl<+2,doncl <v,,, <v,,; etP(n+ 1)estvraie.
Conclusion : pour toutn € N, 1 < v,,1 < v,.

b. La suite (v,,) est donc décroissante et minorée par 1.
Donc elle converge vers une limite #.
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5c. Point fixe

Théoreme (du point fixe) Soit une suite (u,,) définie par une formule de récurrence u, ., = f(u,).
On suppose que u,, converge vers £ € R.
Si f est continue en £, alors ¢ est solution de I'équation f(x) = x.

Remarque : pour pouvoir appliquer le théoreme du point fixe, il faut d’abord avoir démontré gue la suite a une

limite, généralement avec le théoréme de convergence monotone.

Exemple 1 a. On considére la fonction f définie sur [0; 1] par f(x) = 2x(1 — x). Donner ses variations.
b. On considere |a suite (u,) définie sur N paruy = 0,2 et pour toutn € N, w11 = 2u, (1 — uy,).
Démontrer qu’elle est croissante et majorée par 0,5. En déduire que la suite (u,) est convergente,

c. Déterminer la limite de la suite (u,,).

Exemple 2 On s’intéresse au taux de chlore dans une piscine. Pour tout entier naturel n, on note (11,) le taux de
chlore en mg. L=! au jour n. On admet que v, = 0,7 et que pour tout entier naturel n, v,,,, = 0,92v, + 0,3.

a. Montrer que pour tout entier natureln, v, < v, < 4.

b. Montrer que la suite (13,) est convergente et calculer sa limite.

Exemple 1

a. f(x) = 2x — 2x? et sa dérivée est f(x) = 2 — 4x.

Cette dérivée est une fonction affine, positive sur | — oo; 0,5] puis négative sur
[0,5; +0oo[. Donc f est croissante sur [0; 0,5] puis décroissante sur [0,5; 1].

b. Montrons P(n) : « u, < u,4+; < 0,5» pour toutn € N.

Initialisation : Montrons P(0) : « uy < u; < 0,5 ».

Onauy=02etu; = f(uy) =2x%x0,2(1-0,2) =2x0,2x%x0,8=0,32.

On abienuy < uy < 0,5et P(0) est vraie.

Hérédité : Soit n € N. Supposons que P(n) : «u, < u,,; < 0,5 »estvraie.
Montrons que P(n + 1) : « U411 < Upyo < 0,5 » est vraie.

D’apres I'hypothese de récurrence :

Uy, < Upp1 <05

S f(uy) < f(upe1) < f(0,5) car f est croissante sur [0; 0,5].

S Upyqg S Upyp < 05car £(0,5) =2x%x0,5(1-05)=2x%x0,5x%0,5=0,5.
Ainsi, P(n + 1) est vraie.

Conclusion : pour toutn € N, u, < u,;; < 0,5.

La suite (u,) est donc croissante et majorée par 0,5.

Elle converge vers une limite 2.

c. La suite (u,,) est convergente et définie par une relation de récurrence

Uy+1 = f(uy) ou f est une fonction continue. D’apres le théoréme du point fixe :
fe&)=+¢

S22 -40)=+*

S 20 -202=7¢ .
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S L—-202=0

= £(1-20)=0

Cette équation produit nul a deux solutions: # =0et1 -2 =0 ¢ = 0,5.

La limite est donc 0 ou 0,5. Or, la limite ne peut pas étre0, car (u,,) est croissante
et son premier terme est u, = 0,2.

Ainsi, £ = 0,5et lim u, =0,5.

n—+oo

Exemple 2

a. Montrons P(n) : « v, < v,41 < 4 » pour toutn € N.

Initialisation : Montrons P(0) : « vy < vy < 4 ».

Orvy,=0,7etv; =092 X% 0,7+ 0,3 = 0,944. Ainsi vy < v; < 4.P(0) est vraie.
Hérédité : Soit n € N. Supposons que P(n) : « v, < v,41 < 4 » est vraie.

Montrons que P(m + 1) : « V11 < Uty < 4 » est vraie.

D’apres I'hypothese de récurrence :

Vp S Vpp < 4

< 092v, <092v,,,; <092 x4

< 092v, +0,3<0,92v,,,;, +0,3<3,68+0,3

S Vpp1 < Vpgo < 3,98

Or 3,98 < 4,donc v,y < Vpyp <4 et P(n+ 1) est vraie.

Conclusion : pour toutn € N, v, < v,,1 < 4.

b. La suite (v,) est donc croissante et majorée par 4.

Donc elle converge vers une limite #. Elle est définie par une relation de

récurrence u, ., = f(u,) ou f(x) = 0,92x + 0,3 est une fonction continue.
D’apres le théoreme du point fixe :
fO)=+¢
< 092¢+03 =+
< 0,92¢—-¢=-0,3
< —0,08¢ =-0,3
— 0,3 —
= m = 3,75

Ainsi, lim u, = 3,75
n—+4oo
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