
Chapitre 4 – Limites et continuité 
Dans tout le chapitre, 𝑓 est une fonction définie sur un intervalle 𝐼. 

1. Limites en l’infini 

1a. Limite en +∞ 
La limite de 𝑓 en +∞ se définit de la même manière que celle d’une 
suite. 

 

 Ici, on ne regarde que ce qui se passe sur la « partie droite » de la courbe.

+∞ −∞ +∞ +∞ 
 

−∞ +∞ +∞ pas de limite 
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0+ environ 2 ? 
(on montrera que 

c’est en fait   
7
3

   )

2 0+ 
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1b. Limite en −∞ 
La limite de 𝑓 en −∞ a une définition analogue, mais on s’intéresse cette 
fois à la « partie gauche » du graphique. 

 
 
Cette fois, on ne regarde que ce qui se passe sur la « partie gauche » de la courbe, 
quand l’abscisse tend vers −∞.  
Remarquez bien le « x → −∞ » en-dessous du mot « lim » : cela change de ce qu’on 
connaît sur les suites, pour lesquelles on ne calcule la limite que quand n → +∞  .

+∞ 0+ 0− −∞ 
 

+∞ −4 −∞ environ 2 
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1c. Asymptotes horizontales 
Définition : si 𝑓 a pour limite finie un nombre ℓ en +∞ ou −∞, 
alors on dit que la droite d’équation 𝑦 = ℓ est une asymptote 
horizontale à la courbe représentative de 𝑓. 

 

a.  lim
𝑥→−∞

𝑓(𝑥) = 0  

donc la courbe admet une asymptote horizontale d’équation 𝒚 = 𝟎. 
b. lim

𝑥→+∞
𝑓(𝑥) = −4  (et  lim

𝑥→−∞
𝑓(𝑥) = −4 aussi) 

donc la courbe admet une asymptote horizontale d’équation 𝒚 = −𝟒. 
c.  lim

𝑥→+∞
𝑓(𝑥) = +∞ 

Cette limite n’est pas finie (et la limite en −∞ n’existe pas), donc la courbe 
n’admet pas d’asymptote horizontale. 

d.  lim
𝑥→+∞

𝑓(𝑥) =  lim
𝑥→−∞

𝑓(𝑥) =
7
3

  

donc la courbe admet une asymptote horizontale d’équation 𝒚 =
𝟕
𝟑

. 

e.  lim
𝑥→+∞

𝑓(𝑥) = +∞ et  lim
𝑥→−∞

𝑓(𝑥) = −∞ 

Ces limites ne sont pas finies, donc la courbe n’admet pas d’asymptote 
horizontale. 
f.  lim

𝑥→+∞
𝑓(𝑥) = 2  

donc la courbe admet une asymptote horizontale d’équation 𝒚 = 𝟐. 
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2. Limites en un réel 
Soit 𝑎 ∈ ℝ une borne de l’intervalle 𝐼. 

2a. Limite infinie en un réel a 
Définition : 𝑓 tend vers +∞ quand 𝑥 tend vers 𝑎 si pour tout réel 𝐴, 
l’intervalle ]𝐴; +∞[ contient toutes les valeurs 𝑓(𝑥) pour 𝑥 
suffisamment proche de 𝑎. On note : 

lim
𝑥→𝑎

𝑓(𝑥) = +∞ 

 

Ici, on précise maintenant vers quel réel 𝑎 l’abscisse 𝑥 tend, en-dessous du mot 
« lim ». On n’a une limite infinie que quand la fonction n’est pas définie en 𝒂. 

Par exemple, la dernière fonction est définie sur ]
7
5

; +∞[ donc on s’intéresse à la 

limite quand 𝑥 tend vers 
7

5
 . 

lim
𝑥→0

 
1

𝑥2
= +∞ lim

𝑥→−2

−3

√𝑥 + 2
= −∞ 

 

lim
𝑥→5

2𝑥² − 17𝑥 + 46

(𝑥 − 5)²
= +∞ lim

𝑥→
7
5

3 −
𝑥²

√5𝑥 − 7
= −∞ 
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2b. Limite à gauche/droite 
On peut distinguer : 
- la limite à gauche, quand 𝑥 tend vers 𝑎, mais 𝑥 < 𝑎  

lim
𝑥→𝑎
𝑥<𝑎

𝑓(𝑥)       ou      lim
𝑥→𝑎−

𝑓(𝑥) 

- la limite à droite, quand 𝑥 tend vers 𝑎, mais 𝑥 > 𝑎  

lim
𝑥→𝑎
𝑥>𝑎

𝑓(𝑥)       ou      lim
𝑥→𝑎+

𝑓(𝑥) 

 

Il existe donc deux écritures équivalentes : «  lim
x→a
x<a

f(x) » qui est assez claire, et  

« lim
x→a−

f(x) » qui est plus rapide à écrire mais moins explicite. 

Par exemple, la limite à droite en −3 d’une fonction f s’écrit « lim
x→−3+

f(x) ».  

Les énoncés de bac n’utilisent pas souvent ces deux notations et préfèrent 
généralement demander la « limite à droite en −3   ».
a.  lim

𝑥→0
𝑥<0

𝑓(𝑥) = −∞ et  lim
𝑥→0
𝑥>0

𝑓(𝑥) = +∞. 

b. Ici, c’est en −1,5 que l’on cherche la limite, car 2𝑥 + 3 = 0 ⟺ 𝑥 = −1,5. 
 lim
𝑥→−1,5
𝑥<−1,5

𝑓(𝑥) = +∞ et  lim
𝑥→−1,5
𝑥>−1,5

𝑓(𝑥) = −∞ . 

c.  lim
𝑥→1
𝑥>1

𝑓(𝑥) = +∞. 

𝑓 n’étant définie que sur ]1; +∞[, elle n’admet pas de limite à gauche en 1. 
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2c. Asymptotes verticales 
Définition : si 𝑓 a pour limite infinie +∞ ou −∞ en un nombre 𝑎 
alors on dit que la droite d’équation 𝑥 = 𝑎 est une asymptote verticale 
à la courbe représentative de 𝑓. 

 

 

 

 

 

 

Attention : pour que la courbe admette une asymptote verticale d’équation 𝐱 = 𝐚, 
il faut donc que la limite en un réel 𝐚 soit +∞ ou −∞. 
Pour une asymptote horizontale d’équation 𝐲 = 𝓵 comme dans la partie 
précédente, c’est l’inverse : il faut que la limite en +∞ ou −∞ soit un réel 𝓵. 
 
a.  lim

𝑥→0
𝑥<0

𝑓(𝑥) = +∞ (et  lim
𝑥→0
𝑥>0

𝑓(𝑥) = −∞) 

donc la courbe admet une asymptote verticale d’équation 𝒙 = 𝟎. 
b.  lim

𝑥→−2
𝑓(𝑥) = +∞ (on ne sépare pas les limites à gauche et à droite, car c’est la 

 même limite)
donc la courbe admet une asymptote verticale d’équation 𝒙 = −𝟐. 
c. La fonction exp n’admet pas de limite infinie en un réel (on n’a pas de limite du 
type  lim

𝑥→𝑎
𝑒𝑥 = ±∞) donc sa courbe n’admet pas d’asymptote verticale. 
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2d. Limite finie en un réel 
Définition :  𝑓 tend vers ℓ ∈ ℝ quand 𝑥 tend vers 𝑎 si tout intervalle 
ouvert contenant ℓ, contient toutes les valeurs 𝑓(𝑥) pour 𝑥 
suffisamment proche de 𝑎. On note : 

lim
𝑥→𝑎

𝑓(𝑥) = ℓ 

On peut aussi distinguer les limites à gauche et à droite. 

 
• L’intervalle ]1; 3[ contient toutes les valeurs de 𝑓 pour 𝑥 < 6 environ. 
• L’intervalle ]1,5; 2,5[ contient toutes les valeurs de 𝑓 pour 𝑥 < 4,2 environ. 
• L’intervalle ]1,9; 2,1[contient toutes les valeurs de 𝑓 pour 𝑥 < 2,6 environ. 
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3. Déterminer une limite 

3a. Limites des fonctions usuelles 

 

charly-piva.fr



3b. Opérations sur les limites 

 

 

Exemple 1 À chaque fois, on se réfère aux limites des suites usuelles, puis au 
tableau pour connaître la limite d’une somme, d’un produit ou d’un quotient. 
a.  lim

𝑥→−∞
𝑥² = +∞ et  lim

𝑥→−∞
𝑒𝑥 = 0+. Par différence,  𝐥𝐢𝐦

𝒙→−∞
𝒙² − 𝒆𝒙 = +∞. 

b.  lim
𝑥→0

𝑥 = 0 et  lim
𝑥→0

1

x²
= +∞. Par somme,  𝐥𝐢𝐦

𝒙→𝟎
𝒙 +

𝟏

𝐱²
= +∞. 

c.  lim
𝑥→−∞

𝑒𝑥 = 0+, donc par différence,  lim
𝑥→−∞

𝑒𝑥 − 3 = −3. 

De plus,  lim
𝑥→−∞

𝑥² + 4 = +∞. Par quotient,  𝐥𝐢𝐦
𝒙→−∞

𝐞𝐱−𝟑

𝐱²+𝟒
= 𝟎−. 

Pour le signe du 0−  , on a utilisé la règle « moins divisé par moins donne plus ».
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d.  lim
𝑥→+∞

−𝑥² = −3 et  lim
𝑥→+∞

𝑒𝑥 = +∞. Par produit,  𝐥𝐢𝐦
𝒙→+∞

−𝟑𝒆𝒙 = −∞. 

e.  lim
𝑥→−∞

𝑥² = +∞ , donc  lim
𝑥→−∞

(4 − 𝑥2) = −∞. 

De plus,  lim
𝑥→−∞

𝑥 = −∞, donc  lim
𝑥→−∞

(5𝑥 − 2) = −∞. 

Ainsi, par produit,  𝐥𝐢𝐦
𝒙→−∞

(𝟒 − 𝒙𝟐)(𝟓𝒙 − 𝟐) = +∞. 

f. Ici, on fait attention : c’est une limite à gauche. Ce qui signifie que x tend vers 0 
en étant plus petit que 0, c’est-à-dire négatif.  
C’est pourquoi la limite de 𝟑𝐱 est 𝟎−, et c’est important de le détailler ici : dans la 
colonne quotient du tableau, vous pouvez voir que la limite d’un quotient de la 

forme «  
ℓ

0
  » est +∞ ou −∞ suivant qu’il s’agisse de 0+ ou 0− ! 

Pour ne pas se tromper, on applique la règle des signes sur les produits et 
quotients. Par exemple ici, on se dit « plus divisé par moins donne moins ». 
Attention à une autre notation trompeuse : techniquement, la limite à gauche en 0 
de 7 + x est « 7− », mais ce « 7− » représente quand même un nombre positif 

malgré la présence du − !  
 Il signifie « la limite est 7, en prenant des valeurs inférieures à 7 ».

 lim
𝑥→0
𝑥<0

7 + 𝑥 = 7 et  lim
𝑥→0
𝑥<0

3𝑥 = 0−. Par quotient,  𝐥𝐢𝐦
𝒙→𝟎
𝒙<𝟎

𝟕+𝐱

𝟑𝐱
= −∞. 

g. On demande une limite à droite. Pour 𝑥 > 1, (𝑥 − 1) est positif, donc (𝑥 − 1)3 
est également positif. Ainsi,  lim

𝑥→1+
(𝑥 − 1)3 = 0+. 

De plus,  lim
𝑥→1+

−2 = −2. Par quotient,  𝐥𝐢𝐦
𝒙→𝟏+

−𝟐

(𝐱−𝟏)𝟑 = −∞. 

C’est la règle des signes avec une expression de la forme «  
0

ℓ
  » : « plus divisé par 

 moins donne plus ».

h.  lim
𝑥→2+

√𝑥 − 3 = √2 − 3, qui est un nombre négatif. 

Pour 𝑥 > 2, (8 − 4𝑥) est négatif, donc  lim
𝑥→2+

8 − 4𝑥 = 0− 

Ainsi, par quotient,  𝐥𝐢𝐦
𝒙→𝟐+

√𝐱−𝟑

𝟖−𝟒𝐱
= +∞.  

On a encore appliqué la règle des signes avec une expression de la forme «  
ℓ

0
  » : 

« moins divisé par moins donne plus ». 

Exemple 2 
a. On voit dans cet exemple qu’il peut y avoir une forme indéterminée, mais pas 

 toujours : cela dépend de la borne où on calcule la limite.
• En −∞, lim

𝑥→−∞
3𝑥3 = −∞ et  lim

𝑥→−∞
𝑥2 = +∞ donc  lim

𝑥→−∞
−2𝑥2 = −∞. 

Par somme,  𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = −∞. 

• En +∞, lim
𝑥→+∞

3𝑥3 = +∞ et  lim
𝑥→+∞

𝑥2 = +∞ donc  lim
𝑥→−∞

−2𝑥2 = −∞. 

Par somme, il s’agit d’une forme indéterminée. 
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On factorise : pour tout 𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑥3 (3 −
2

x
+

5

x3) 

Ainsi,  lim
𝑥→+∞

𝑥² = +∞ et  lim
𝑥→+∞

(3 −
2

x
+

5

x3) = 3. 

Par produit,  𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = +∞. 

b. La fonction 𝑔 est définie pour tout 𝑥 réel, sauf 1 qui est une valeur interdite. 
Elle est donc définie sur ] − ∞; 𝟏[∪]𝟏; +∞[ : il y a donc 4 limites à déterminer. 
• En −∞, lim

𝑥→−∞
𝑥² − 7 = +∞ et lim

𝑥→−∞
𝑥 − 1 = −∞.  

Par quotient, il s’agit d’une forme indéterminée. 

On factorise : pour tout 𝑥 ≠ 1, 𝑔(𝑥) =
x(x−

7

x
)

x(1−
1

x
)

=
x−

7

x

1−
1

x

 

Maintenant, lim
𝑥→−∞

x −
7

x
= −∞ et lim

𝑥→−∞
1 −

1

x
= 1. 

Par quotient,  𝐥𝐢𝐦
𝒙→−∞

𝒈(𝒙) = −∞. 

• En +∞, on réutilise la factorisation : lim
𝑥→+∞

x −
7

x
= +∞ et lim

𝑥→+∞
1 −

1

x
= 1. 

Par quotient,  𝐥𝐢𝐦
𝒙→+∞

𝒈(𝒙) = +∞. 

• En 1 à gauche, on utilise la forme initiale de la fonction, qui est plus simple : 

𝑔(𝑥) =
𝑥2 − 7

𝑥 − 1
 

 lim
𝑥→1
𝑥<1

 𝑥² − 7 = 12 − 7 = −6 et lim
𝑥→1
𝑥<1

 𝑥 − 1 = 0−. Par quotient, 𝐥𝐢𝐦
𝒙→𝟏
𝒙<𝟏

 𝒈(𝒙) = +∞. 

• En 1 à droite : lim
𝑥→1
𝑥>1

 𝑥² − 7 = −6 et lim
𝑥→1
𝑥>1

 𝑥 − 1 = 0+. Par quotient, 𝐥𝐢𝐦
𝒙→𝟏
𝒙>𝟏

 𝒈(𝒙) = −∞. 

c. On a affaire à une forme indéterminée, mais on se rappelle des opérations sur les 
puissances : 𝑒2𝑥 = 𝑒𝑥×2 = (𝑒𝑥)²  . On peut donc factoriser.

Pour tout 𝑥 ∈ ℝ, ℎ(𝑥) = 𝑒2𝑥 − 4𝑒𝑥 = (𝑒𝑥)2 − 4𝑒𝑥 = 𝑒𝑥(𝑒𝑥 − 4). 
Ainsi,  lim

𝑥→+∞
𝑒𝑥 = +∞ et  lim

𝑥→+∞
(𝑒𝑥 − 4) = +∞. Par produit,  𝐥𝐢𝐦

𝒙→+∞
𝒉(𝒙) = +∞. 
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3c. Étude de fonctions 
Lors d’une étude de fonction, on indiquera maintenant les limites dans 
le tableau de variations. 

 

• La fonction 𝑓 est définie pour tout réel 𝑥, sauf −2. Son ensemble de définition 
est ] − ∞; −𝟐[∪] − 𝟐; +∞[. Cet ensemble se note aussi ℝ\{−2}. 
• Dérivons 𝑓. Pour tout 𝑥 ≠ 2, on pose :  𝑢(𝑥) = −𝑥2 + 𝑥 + 2  𝑣(𝑥) = 𝑥 + 2 
         𝑢′(𝑥) = −2𝑥 + 1  𝑣′(𝑥) = 1 

𝑓′(𝑥) =
(−2𝑥 + 1)(𝑥 + 2) − (−𝑥2 + 𝑥 + 2) × 1

(𝑥 + 2)2
 

𝑓′(𝑥) =
−2𝑥2 − 4𝑥 + 𝑥 + 2 + 𝑥2 − 𝑥 − 2

(𝑥 + 2)2
 

𝑓′(𝑥) =
−𝑥2 − 4𝑥

(𝑥 + 2)2
 

On pourrait étudier le numérateur comme un polynôme, mais il est plus simple de le 
 factoriser.

𝒇′(𝒙) =
−𝒙(𝒙 + 𝟒)

(𝒙 + 𝟐)𝟐
 

• Le dénominateur est strictement positif pour tout 𝑥, donc le signe de 𝑓′(𝑥) ne 
dépend que de −𝑥 et de (𝑥 + 4). On dresse le tableau de variations de 𝒇. 
 
 
 
 
 
 
 
 
Il nous faut maintenant trouver les quatre limites, ainsi que les deux extremums 
(en −4 et en 0).  
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• 𝑓(−4) =
−(−4)2+(−4)+2

−4+2
 =

−18
−2

= 𝟗 et 𝑓(0) =
−02+0+2

0+2
 =

2
2

= 𝟏 

• Déterminons la limite en −∞. Par quotient, cela semble être une forme 
indéterminée, donc on factorise et on simplifie : 

𝑓(𝑥) =
−𝑥2 + 𝑥 + 2

𝑥 + 2
=

𝑥(−𝑥 + 1 +
2
𝑥

)

𝑥 (1 +
2
𝑥

)
=

−𝑥 + 1 +
2
𝑥

1 +
2
𝑥

 

Ainsi, lim
𝑥→−∞

− x + 1 +
2

x
= +∞ et lim

𝑥→−∞
1 +

2

x
= 1. Par quotient, 𝐥𝐢𝐦

𝒙→−∞
𝒇(𝒙) = +∞. 

• En +∞, on réutilise la même forme. 

lim
𝑥→+∞

− x + 1 +
2

x
= −∞ et lim

𝑥→+∞
1 +

2

x
= 1. Par quotient, 𝐥𝐢𝐦

𝒙→+∞
𝒇(𝒙) = −∞. 

• Pour la limite en −2 à gauche, il est plus simple de revenir à la forme initiale : 

𝑓(𝑥) =
−𝑥2 + 𝑥 + 2

𝑥 + 2
 

lim
𝑥→−2

− 𝑥2 + 𝑥 + 2 = −4 (cette limite est la même à gauche ou à droite)  

et lim
𝑥→−2
𝑥<−2

x + 2 = 0− 

Par quotient, 𝐥𝐢𝐦
𝒙→−𝟐
𝒙<−𝟐

𝒇(𝒙) = +∞. 

• Idem pour la limite en −2 à droite. 
lim

𝑥→−2
− 𝑥2 + 𝑥 + 2 = −4 et lim

𝑥→−2
𝑥>−2

x + 2 = 0+. Par quotient, 𝐥𝐢𝐦
𝒙→−𝟐
𝒙>−𝟐

𝒇(𝒙) = +∞. 

• Nous pouvons (enfin) remplir le tableau de variations ! On vérifie que les limites et 
extremums trouvés sont bien cohérent avec le sens de variation (une fonction ne 
peut pas tendre vers −∞   en étant croissante).
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4. Théorèmes sur les limites 

4a. Comparaison & gendarmes 

 

Exemple 1 a.  Pour tout 𝑥 ∈ ℝ : La fonction sinus n’a pas de  limite. On l’encadre.
−1 ≤ sin(𝑥) ≤ 1 
⟺ 2 − 1 ≤ 2 + sin(𝑥) ≤ 2 + 1 
⟺ 1 ≤ 2 + sin(𝑥) ≤ 3 

On multiplie par 𝑒𝑥 qui est strictement positif pour tout 𝑥 ∈ ℝ. 
⟺ 𝑒𝑥 ≤ 𝑒𝑥(2 + sin(𝑥)) ≤ 3𝑒𝑥 

Or lim
𝑥→+∞ 

𝑒𝑥 = +∞, donc d’après le théorème de comparaison,  

𝐥𝐢𝐦
𝒙→+∞ 

𝒆𝒙(𝟐 + 𝐬𝐢𝐧(𝒙)) = +∞. 

b. Pour tout 𝑥 < 0 :           −1 ≤ cos(𝑥) ≤ 1 
⟺ 3 − 1 ≤ 3 + cos(𝑥) ≤ 3 + 1 
⟺ 2 ≤ 3 + cos(𝑥) ≤ 4 

⟺
2

𝑥2
≤

3 + cos(𝑥)

𝑥2
≤

4

𝑥2
 

Or lim
𝑥→−∞ 

2

𝑥2 = lim
𝑥→−∞ 

4

𝑥2 = 0, donc d’après le théorème des gendarmes,  

𝐥𝐢𝐦
𝒙→−∞ 

𝟑+𝐜𝐨𝐬 (𝒙)

𝒙𝟐 = 𝟎. 

Exemple 2 a. On calcule lim
𝑥→+∞ 

5 − 2𝑥 = −∞. Or 𝑓(𝑥) ≤ 5 − 2𝑥, donc d’après le 

théorème de comparaison, lim
𝑥→+∞ 

𝑓(𝑥) = −∞. L’affirmation est vraie. 

b. Si on prend, par exemple, 𝑓(𝑥) = −2𝑥 + 3sin (𝑥), on a bien sin(𝑥) ≤ 1, donc 
3 sin(𝑥) ≤ 3 et ainsi  −2𝑥 + 3 sin(𝑥) ≤ 3 − 2𝑥. On a bien 𝑓(𝑥) ≤ 5 − 2𝑥. 
Pourtant, pour 𝑥 ≥ 0, 𝑓′(𝑥) = −2 + 3cos (𝑥) et cette dérivée prend des valeurs 
positives : 𝑓′(0) = −2 + 3 × 1 = 1.  
𝑓 n’est donc pas décroissante sur [0; +∞[. L’affirmation est fausse. 
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4b. Croissances comparées 
Propriété : En cas de forme indéterminée sur un produit/quotient d’une 
fonction puissance par la fonction 𝑒𝑥𝑝, les croissances comparées 
permettent de lever l’indétermination.  
Pour tout 𝑛 ∈ ℕ, 

lim
𝑥→+∞

𝑒𝑥

𝑥𝑛
= +∞              lim

𝑥→−∞
𝑥𝑛𝑒𝑥 = 0 

Par passage à l’inverse, on trouve aussi : 

lim
𝑥→+∞

𝑥𝑛

𝑒𝑥
= lim

𝑥→+∞
𝑥𝑛𝑒−𝑥 = 0+          lim

𝑥→−∞

𝑒−𝑥

𝑥𝑛
= +∞ si n pair, −∞ sinon 

 

D’une façon générale, on peut retenir que lors d’un produit/quotient indéterminé à 
cause d’une fonction puissance et d’une fonction exponentielle, « c’est 
l’exponentielle qui gagne ». 

 Mais attention à ne pas utiliser les croissances comparées en-dehors de ce cas-là !
Exemple 1 
a.  lim

𝑥→+∞
𝑒𝑥 = +∞ et  lim

𝑥→+∞
𝑥7 = +∞. Par quotient, c’est une forme indéterminée. 

Mais  𝐥𝐢𝐦
𝒙→+∞

𝒆𝒙

𝒙𝟕 = +∞ d’après les croissances comparées. 

b. On sépare les deux termes de la somme : 
𝑥3−2

𝑒𝑥 =
𝑥3

𝑒𝑥 −
2

𝑒𝑥 

•  lim
𝑥→+∞

𝑥3 = +∞ et  lim
𝑥→+∞

𝑒𝑥 = +∞. Par quotient, c’est une forme indéterminée. 

Mais  lim
𝑥→+∞

𝑥3

𝑒𝑥 = +∞ d’après les croissances comparées. 

•  lim
𝑥→+∞

2 = 2 et  lim
𝑥→+∞

𝑒𝑥 = +∞. Par quotient,  lim
𝑥→+∞

2
𝑒𝑥 = +∞. 

En conclusion, par différence,  𝐥𝐢𝐦
𝒙→+∞

𝒙𝟑−𝟐
𝒆𝒙 = +∞. 
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c. Commençons par développer : (𝑥2 + 4)𝑒−𝑥 = 𝑥2𝑒−𝑥 + 4𝑒−𝑥 . 
•  lim

𝑥→+∞
𝑥2 = +∞ et  lim

𝑥→+∞
𝑒−𝑥 = 0. Par produit, c’est une forme indéterminée. 

Mais  lim
𝑥→+∞

𝑥2𝑒−𝑥 = 0 d’après les croissances comparées. 

•  lim
𝑥→+∞

4 = 4 et  lim
𝑥→+∞

𝑒−𝑥 = 0. Par produit, lim
𝑥→+∞

4𝑒−𝑥 = 0  

En conclusion, par somme,  𝐥𝐢𝐦
𝒙→+∞

(𝒙𝟐 + 𝟒)𝒆−𝒙 = 𝟎. 

d. Attention, ici on cherche la limite en −∞  .
•  lim

𝑥→−∞
𝑥4 = +∞ 

•  lim
𝑥→−∞

2𝑥 = −∞ et  lim
𝑥→−∞

𝑒𝑥 = 0. Par produit, c’est une forme indéterminée. 

Mais  lim
𝑥→−∞

2𝑥𝑒−𝑥 = 0 d’après les croissances comparées. 

En conclusion, par différence,  𝐥𝐢𝐦
𝒙→−∞

𝒙𝟒 − 𝟐𝒙𝒆𝒙 = +∞. 

Exemple 2 

1. • Déterminons la limite en −∞ : lim
𝑥→−∞

𝑥𝑒−𝑥 =  lim
𝑥→−∞

𝑥
𝑒𝑥 

Or  lim
𝑥→−∞

𝑥 = −∞ et  lim
𝑥→−∞

𝑒𝑥 = 0+. Par quotient,  lim
𝑥→−∞

𝑥𝑒−𝑥 =  lim
𝑥→−∞

𝑥
𝑒𝑥 = −∞. 

Ce n’est pas une forme indéterminée : pas besoin des croissances comparées ! 
De plus,  lim

𝑥→−∞
2𝑥 + 1 = −∞. Ainsi, par somme,  𝐥𝐢𝐦

𝒙→−∞
𝒇(𝒙) = −∞. 

• Déterminons la limite en +∞ : lim
𝑥→+∞

𝑥𝑒−𝑥 =  lim
𝑥→+∞

𝑥
𝑒𝑥 

Or  lim
𝑥→+∞

𝑥 = +∞ et  lim
𝑥→+∞

𝑒𝑥 = +∞. Par quotient, c’est une forme indéterminée. 

Mais d’après les croissances comparées,  lim
𝑥→+∞

𝑥𝑒−𝑥 =  lim
𝑥→+∞

𝑥
𝑒𝑥 = 0. 

De plus,  lim
𝑥→+∞

2𝑥 + 1 = +∞. Ainsi, par somme,  𝐥𝐢𝐦
𝒙→+∞

𝒇(𝒙) = +∞. 

2. Attention à xe−x : c’est un produit avec e−x qui est une fonction composée. 
On pose 𝑢(𝑥) = 𝑥 et 𝑣(𝑥) = 𝑒−𝑥 .  
On a alors 𝑢′(𝑥) = 1 et 𝑣′(𝑥) = −𝑒−𝑥 . 
Ainsi, 𝑓′(𝑥) = 1𝑒−𝑥 + 𝑥 × (−𝑒−𝑥) + 2 = 𝒆−𝒙(𝟏 − 𝒙) + 𝟐. 
3. On pose maintenant 𝑢(𝑥) = 𝑒−𝑥 et 𝑣(𝑥) = 1 − 𝑥.  
On a alors  𝑢′(𝑥) = −𝑒−𝑥 et 𝑣′(𝑥) = −1. 
Ainsi, 𝑓′′(𝑥) = −𝑒−𝑥(1 − 𝑥) + 𝑒−𝑥 × (−1) = 𝑒−𝑥(−1 + 𝑥 − 1) = 𝒆−𝒙(𝒙 − 𝟐). 
4. Le signe de 𝑓′′(𝑥) ne dépend que de (𝑥 − 2), qui est négatif sur ] − ∞; 2] puis 
positif sur [2; +∞[. Ainsi 𝒇 est concave sur ] − ∞; 𝟐] puis convexe sur [𝟐; +∞[. 
5. On déduit du signe de 𝑓′′(𝑥) que 𝒇′ est décroissante sur ] − ∞; 𝟐] puis 
croissante sur [𝟐; +∞[.  
Son minimum est 𝑓′(2) = 𝑒−2(1 − 2) + 2 = 𝟐 − 𝒆−𝟐. 
6. 𝑒−2 est inférieur à 1, donc le minimum de 𝑓′ est strictement positif. 
Ainsi, 𝒇′(𝒙) est strictement positif pour tout 𝑥 ∈ ℝ. 
On en déduit que 𝒇 est croissante sur ℝ. 
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4c. Fonctions composées 
Propriété (composition) : 𝑎, 𝑏 et 𝑐 désignent des bornes d’intervalle. 
 

si  𝑙𝑖𝑚
𝑥→𝑎

𝑢(𝑥) = 𝑏    et    𝑙𝑖𝑚
𝑋→𝑏

𝑣(𝑋)  = 𝑐     , alors   𝑙𝑖𝑚
𝑥→𝑎

𝑣(𝑢(𝑥)) = 𝑐 

 
Il s’agit de calculer d’abord la limite de la fonction « à l’intérieur », puis de calculer 
la limite de la fonction « à l’extérieur » quand 𝑥 tend vers la limite de la fonction « à 
l’intérieur ». 

Exemple 1 
a.  lim

𝑥→+∞
3 − 2𝑥 = −∞ et  lim

𝑋→−∞
𝑒𝑋 = 0+.  

Donc par composition,  𝐥𝐢𝐦
𝒙→+∞

𝒆𝟑−𝟐𝒙 = 𝟎+. 

Quand on calcule la limite de la fonction « à l’intérieur », on peut noter la variable 
avec un grand X, pour mettre en avant le fait que ce X correspond à la fonction « à 
l’intérieur ».  
Par exemple, dans l’exemple précédent, le X de  lim

X→−∞
eX correspond à 3 − 2x. 

 Cette notation n’est pas obligatoire, mais elle peut faciliter la compréhension.

b.  lim
𝑥→+∞

3𝑒−𝑥 =  lim
𝑥→+∞

3
𝑒𝑥 = 0 par quotient, et  lim

𝑋→0
√𝑋 = 0. 

Donc par composition,  𝐥𝐢𝐦
𝒙→+∞

√𝟑𝒆−𝒙 = 𝟎. 

c.  lim
𝑥→−∞

𝑥3 − 3𝑥 est une forme indéterminée par différence. 

Mais 𝑥3 − 3𝑥 = 𝑥(𝑥2 − 3). Par produit,  lim
𝑥→−∞

𝑥3 − 3𝑥 =  lim
𝑥→−∞

𝑥(𝑥2 − 3) = −∞. 

De plus,  lim
𝑋→−∞

𝑋4 = +∞. 
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Par composition,  𝐥𝐢𝐦
𝒙→−∞

(𝒙𝟑 − 𝟑𝒙)𝟒 = +∞. 

d.  lim
𝑥→−∞

5 −
4

𝑥2 = 5 et  lim
𝑋→5

√𝑋 = √5. Donc par composition,  𝐥𝐢𝐦
𝒙→−∞

√𝟓 −
𝟒

𝒙𝟐 = √𝟓. 

e.  lim
𝑥→1
𝑥<1

𝑥 − 1 = 0− donc par quotient,  lim
𝑥→1
𝑥<1

1
𝑥−1

= −∞. 

De plus,  lim
𝑋→−∞

exp (𝑋) = 0+. 

Par composition,  𝐥𝐢𝐦
𝒙→𝟏
𝒙<𝟏

𝐞𝐱𝐩 (
𝟏

𝒙−𝟏
) = 𝟎+ 

Exemple 2 

a. 𝑓 est de la forme 
1

𝑣
 avec 𝑣(𝑥) = 1 + 𝑒−3𝑥. On a alors 𝑣′(𝑥) = −3𝑒−3𝑥. Ainsi ; 

𝑓′(𝑥) = −
−3𝑒−3𝑥

(1 + 𝑒−3𝑥)2
=

3𝑒−3𝑥

(1 + 𝑒−3𝑥)2
 

Or la fonction exponentielle et le carré sont toujours positifs. 
Ainsi, 𝒇 est croissante sur ℝ. 
Il nous faut juste trouver ses limites en −∞ et en +∞. 
• En − ∞, lim

𝑥→−∞
𝑒−3𝑥 = +∞ par composition. Donc lim

𝑥→−∞
1 + 𝑒−3𝑥 = +∞, 

puis par quotient, 𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = 𝟎+. 

• En +∞, lim
𝑥→+∞

𝑒−3𝑥 = 0+ par composition. Donc lim
𝑥→+∞

1 + 𝑒−3𝑥 = 1, 

puis par quotient, 𝐥𝐢𝐦
𝒙→+∞

𝒇(𝒙) = 𝟏. 

b. La tangente au point d’abscisse 0 a pour équation 𝑦 = 𝑓′(0)(𝑥 − 0) + 𝑓(0).  

𝑓′(0) =
3𝑒−3×0

(1 + 𝑒−3×0)2
=

3

(1 + 1)2
=

3

4
    et    𝑓(0) =

1

1 + 𝑒−3×0
=

1

2
 

Ainsi, l’équation de la tangente est 𝒚 =
𝟑
𝟒

𝒙 +
𝟏
𝟐

. 

Exemple 3 
Il s’agit d’une forme indéterminée, mais on factorise par 𝑒4𝑥. Pour 𝑥 ∈ ℝ : 

𝑔(𝑥) =
𝑒4𝑥

7 − 3𝑒4𝑥
=

𝑒4𝑥 × 1

𝑒4𝑥 (
7

𝑒4𝑥 − 3)
=

1

7
𝑒4𝑥 − 3

 

Or par composition, lim
𝑥→+∞

𝑒4𝑥 = +∞ donc par quotient, lim
𝑥→+∞

7

𝑒4𝑥 = 0  

et ainsi par somme, lim
𝑥→+∞

7

𝑒4𝑥 − 3 = −3. 

Donc à nouveau par quotient, 𝐥𝐢𝐦
𝒙→+∞

𝒈(𝒙) = −
𝟏
𝟑

. 
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5. Fonctions continues 

5a. Définition 
On dit que 𝑓 est continue en un point 𝑎 ∈ 𝐼 si :  lim

𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎) 

On dit que 𝑓 est continue sur 𝐼 si elle est continue en tout point de 𝐼. 

 

Il faut vérifier que les limites à gauche et à droite de la fonction au point de 
discontinuité sont égales. 

•  lim
𝑥→1
𝑥<1

𝑓(𝑥) =  lim
𝑥→1

𝑥² − 2𝑥 − 2 = 1² − 2 × 1 − 2 = −3 

et  lim
𝑥→1
𝑥>1

𝑓(𝑥) =  lim
𝑥→1

𝑥−4
𝑥

=
1−4

1
= −3 

𝑓 est continue en 1, et elle est continue sur ℝ\{1}.  

Elle est donc continue sur ℝ. 
 
•  lim

𝑥→0
𝑥<0

𝑔(𝑥) =  lim
𝑥→0

𝑒𝑥 = 𝑒0 = 1 

et  lim
𝑥→0
𝑥>0

𝑔(𝑥) =  lim
𝑥→0

𝑥 + 2 = 0 + 2 = 2 ≠ 1. 

𝑔 n’est pas continue en 0. Elle n’est donc pas continue sur ℝ. 
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5b. Théorème du point fixe 

 

a. Montrons par récurrence la propriété suivante : 𝑣𝑛 ≥ 𝑣𝑛+1 ≥ 1 pour tout 𝑛 ∈ ℕ 

Initialisation : 𝑣0 = 6, et 𝑣1 =
1
3

√62 + 8 =
1
3

√44 ≈ 2,2. 

Pour 𝑛 = 0, on a bien 𝑣0 ≥ 𝑣1 ≥ 1. 
Hérédité : Soit 𝑛 ∈ ℕ. Supposons que 𝑣𝑛 ≥ 𝑣𝑛+1 ≥ 1. 
Montrons alors que 𝑣𝑛+1 ≥ 𝑣𝑛+2 ≥ 1. 
D’après l’hypothèse de récurrence : 
𝑣𝑛 ≥ 𝑣𝑛+1 ≥ 1 
⟺ 𝑣𝑛² ≥ 𝑣𝑛+1² ≥ 1² , la fonction carré étant croissante sur [1; +∞[ 
⟺ 𝑣𝑛

2 + 8 ≥ 𝑣𝑛+1
2 + 8 ≥ 1 + 8  

⟺ √𝑣𝑛
2 + 8 ≥ √𝑣𝑛+1

2 + 8 ≥ √9, la fonction racine carrée étant croissante 

⟺
1

3
√𝑣𝑛

2 + 8 ≥
1

3
√𝑣𝑛+1

2 + 8 ≥
1

3
× 3 

⟺ 𝑣𝑛+1 ≥ 𝑣𝑛+2 ≥ 1 
Conclusion : pour tout 𝑛 ∈ ℕ, on a bien 𝒗𝒏 ≥ 𝒗𝒏+𝟏 ≥ 𝟏. 
La suite (𝑣𝑛) est décroissante et majorée, elle converge vers une limite ℓ. 

b. La fonction 𝑓 définie sur ℝ par 𝑓(𝑥) =
1
3

√𝑥² + 8 est continue, et pour tout 

𝑛 ∈ ℕ, on a 𝑣𝑛+1 = 𝑓(𝑣𝑛).  
D’après le théorème du point fixe, la limite ℓ de (𝑣𝑛) est solution de l’équation : 
𝑓(𝑥) = 𝑥 

⟺
1

3
√𝑥2 + 8 = 𝑥 

⟺ √𝑥2 + 8 = 3𝑥 
⟺ 𝑥2 + 8 = (3𝑥)² 
⟺ 𝑥2 + 8 = 9𝑥² 
⟺ 8𝑥2 = 8 
⟺ 𝑥2 = 1 
L’équation a pour solutions 1 et −1, mais la suite (𝑣𝑛) est minorée par 1. 
La limite ne peut donc pas être −1. Ainsi, (𝒗𝒏) converge vers 1. 
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5c. Théorème des valeurs intermédiaires 
Si 𝑓 est continue sur un intervalle [𝑎; 𝑏],  pour tout réel 𝑘 compris entre 
𝑓(𝑎) et 𝑓(𝑏), l’équation 𝑓(𝑥) = 𝑘 admet au moins une solution 𝑐 dans 
l’intervalle [𝑎; 𝑏]. 

 

La fonction 𝑓 est continue sur [−1; 3]. 
De plus, 𝑓(−1) = (−1)3 − (−1)2 = −2 et 𝑓(3) = 33 − 32 = 18, or 2 ∈ [−2; 18]. 
Donc d’après le théorème des valeurs intermédiaires, l’équation 𝑓(𝑥) = 2 admet 
au moins une solution. 
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5d. Corollaire du TVI 
Si 𝑓 est continue et strictement monotone sur un intervalle [𝑎; 𝑏],  
pour tout réel 𝑘 compris entre 𝑓(𝑎) et 𝑓(𝑏), l’équation 𝑓(𝑥) = 𝑘 admet 
exactement une unique solution 𝑐 dans l’intervalle [𝑎; 𝑏]. 

 

Pour appliquer le corollaire du TVI, il faut donc montrer que la fonction est 
strictement croissante ou strictement décroissante sur l’intervalle considéré.  
Ne vous préoccupez pas trop du « strictement » : on ne connaît pas, en Terminale, 

 de fonction qui soit croissante sans l’être strictement.
Exemple 1 
La fonction 𝑔, définie sur [−2; +∞[ admet pour dérivée :  

𝒈′(𝒙) = 3𝑥2 − 6𝑥 = 𝒙(𝟑𝒙 − 𝟔) 
On dresse le tableau de signes de la dérivée, puis le tableau de variations de 𝑔. 
  

 

 

 

On calcule les extremums et la limite : 
• 𝑔(−2) = (−2)3 − 3 × (−2)2 + 3 = −8 − 12 + 3 = −17 
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• 𝑔(0) = 03 − 3 × 02 + 3 = −3 
• 𝑔(2) = 23 − 3 × 22 + 3 = 8 − 12 + 3 = −1 
• Enfin, la limite en +∞ est indéterminée par somme, mais  

𝑔(𝑥) = 𝑥2 (𝑥 − 3 +
3

𝑥2
) 

et par produit, on trouve  lim
𝑥→+∞

𝑔(𝑥) = +∞. On peut compléter le tableau. 

 

 

 

 

On veut maintenant résoudre l’équation 𝑔(𝑥) = 10. Maintenant que le tableau est 
rempli, on voit que le seul antécédent possible de 10 par la fonction 𝑔 est dans 
l’intervalle [2; +∞[  . On applique donc le corollaire du TVI sur cet intervalle.
• La fonction 𝑔 est continue et strictement croissante sur [2; +∞[, 
• 𝑔(2) = −1,  lim

𝑥→+∞
𝑔(𝑥) = +∞, et 10 ∈ [−1; +∞[  (c’est l’intervalle « image »)

• donc d’après le corollaire du TVI, l’équation 𝑔(𝑥) = 10 admet une unique 
solution 𝜶 ∈ [𝟐; +∞[.  
On utilise la calculatrice pour trouver cet antécédent de 10 : 𝜶 ≈ 𝟑, 𝟓.  
Attention à bien faire l’arrondi demandé par l’énoncé. 

Exemple 2 

a. On dérive en faisant attention au produit 𝑥√𝑥  .

𝑓′(𝑥) =
2

3
(1√𝑥 + 𝑥 ×

1

2√𝑥
) − 2 

Pour réduire la parenthèse, on remarque que pour tout 𝑥 positif, 
𝑥

√𝑥
=

√𝑥²

√𝑥
= √𝑥. 

𝑓′(𝑥) =
2

3
(√𝑥 +

1

2
√𝑥) − 2 

𝑓′(𝑥) =
2

3
×

3

2
√𝑥 − 2 

𝒇′(𝒙) = √𝒙 − 𝟐 

Étudions le signe de 𝑓′(𝑥) : √𝑥 − 2 ≥ 0 ⟺ √𝑥 ≥ 2 ⟺ 𝑥 ≥ 4 

𝑓(4) =
2

3
× 4√4 − 2 × 4 + 1 =

16

3
− 8 + 1 = −

5

3
 

et la limite en +∞ est admise. 
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b. On voit sur le tableau que la fonction 𝑓 passe deux fois par 0 :  
une fois sur [0; 4] (cela correspond au 𝛼 de l’énoncé), et une autre fois sur [4; +∞[ 
(ce qui correspond au 𝛽).  
L’énoncé est un peu plus précis et nous dit même que 𝛼 appartient à [0; 1]. Nous 
allons donc appliquer le corollaire du TVI sur cet intervalle. 
• La fonction 𝑓 est continue et strictement décroissante sur [0; 1] 

• 𝑓(0) = 1, et 𝑓(1) =
2
3

× 1√1 − 2 × 1 + 1 =
2
3

− 1 = −
1
3

 et 0 ∈ [−
1
3

; 1]  

Attention à bien écrire l’intervalle image correctement, avec les bornes de 
l’intervalle dans l’ordre croissante, même si 𝑓   est décroissante.
• donc d’après le corollaire du TVI, l’équation 𝑓(𝑥) = 0 admet une unique 
solution 𝜶 ∈ [𝟎; 𝟏].  
Il faut maintenant réappliquer le corollaire du TVI pour montrer qu’il y a une autre 
solution, cette fois sur l’intervalle [4; +∞[.  
Au Bac, généralement, l’existence de cette deuxième solution est admise (on ne vous 

 fait pas écrire le même raisonnement deux fois).
• La fonction 𝑓 est continue et strictement croissante sur [4; +∞[. 

• 𝑓(4) = −
5
3

 ;    lim
𝑥→+∞

𝑓(𝑥) = +∞ et 0 ∈ [−
5
3

; +∞[  

• donc d’après le corollaire du TVI, l’équation 𝑓(𝑥) = 0 admet une unique 
solution 𝜷 ∈ [𝟒; +∞[. 
c. On utilise la calculatrice pour trouver un encadrement au centième : 
𝟎, 𝟔𝟗 < 𝜶 < 𝟎, 𝟕𝟎. 

Exemple 3 
1. On dérive 𝑓 comme un quotient : 

𝑓′(𝑥) =
10(𝑒𝑥 + 1) − 10𝑥 × 𝑒𝑥

(𝑒𝑥 + 1)2
=

10(𝑒𝑥 + 1 − 𝑥𝑒𝑥)

(𝑒𝑥 + 1)2
 

et si on pose 𝑔(𝑥) = 𝑒𝑥 + 1 − 𝑥𝑒𝑥 , on a bien 𝒇′(𝒙) =
𝟏𝟎

(𝒆𝒙+𝟏)²
× 𝒈(𝒙) 

2. Pour appliquer le corollaire du TVI, il faut connaître le sens de variation de 𝑔. 
Or 𝑔′(𝑥) = 𝑒𝑥 − (1𝑒𝑥 + 𝑥𝑒𝑥) = 𝑒𝑥 − 𝑒𝑥 − 𝑥𝑒𝑥 = −𝑥𝑒𝑥 . 
Sur [0; +∞[, 𝑥 est positif, donc 𝑔′(𝑥) = −𝑥𝑒𝑥  est 
négatif sur tout [0; +∞[.  
On dresse le tableau de variations. 
 

 
On calcule 𝑔(0) = 𝑒0 + 1 − 0𝑒0 = 2  La limite de 𝑔 en −∞ est indéterminée, mais  

𝑔(𝑥) = 𝑒𝑥 (1 +
1

𝑒𝑥
− 𝑥) 

et ainsi, par produit,  lim
𝑥→+∞

𝑔(𝑥) = −∞. 

On peut donc compléter le tableau. 
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On voit que 𝑔   passe une seule fois par 0, on applique le corollaire du TVI.
• La fonction 𝑔 est continue et strictement décroissante sur [0; +∞[, 
• 𝑔(0) = 2,  lim

𝑥→+∞
𝑔(𝑥) = −∞, et 0 ∈] − ∞; 2]  

• donc d’après le corollaire du TVI, l’équation 𝑔(𝑥) = 0 admet une unique 
solution 𝜶 ∈ [𝟎; +∞[. 
On utilise la calculatrice : 𝜶 ≈ 𝟏, 𝟐𝟖.  
3. On vient de démontrer que 𝑔 ne passe qu’une seule 
fois par 0, en 𝛼. 
Elle est décroissante, cela prouve que 𝒈(𝒙) est 
d’abord positif sur [𝟎; 𝜶] puis négatif sur [𝜶; +∞[. 
On peut même compléter le tableau de variation de 𝑔 et 
dresser son tableau de signes comme ci-contre. Ce 
type de raisonnement, consistant à utiliser le sens de 
variation et le TVI pour obtenir le signe d’une 
fonction, est assez fréquent au bac. 

Or on a montré que 𝑓′(𝑥) =
10

(𝑒𝑥+1)²
× 𝑔(𝑥).  

Un carré étant toujours positif, le signe de 𝑓′(𝑥) ne dépend que de 𝑔(𝑥). 
Ainsi, 𝒇 est croissante sur [𝟎; 𝜶] puis décroissante sur [𝜶; +∞[. 
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