
Chapitre 6 – Probabilités 

1. Expériences et événements 

1a. Expérience aléatoire

 
1. On donne notre réponse sous la forme d’un ensemble, qui est l’univers Ω  .

Ω = {𝟏; 𝟐; 𝟑; 𝟒; 𝟓; 𝟔} 

2. Ω = {𝐩𝐢𝐥𝐞; 𝐟𝐚𝐜𝐞} 

3. Ω = {𝟏; 𝟐; 𝟒; 𝟓}.  
Notez que cela ne nous dit pas que le 4 apparaît moins souvent que les autres 
nombres, pour cela il faudra calculer les probabilités. 

4. Il existe 52 issues. Par exemple : 7 de cœur, as de carreau… 

5. Le tableau décompose les élèves en 4 catégories, donc : 
Ω = {𝐟𝐢𝐥𝐥𝐞 𝐞𝐱𝐭. , 𝐟𝐢𝐥𝐥𝐞 𝐝𝐞𝐦𝐢– 𝐩. , 𝐠𝐚𝐫ç𝐨𝐧 𝐞𝐱𝐭. , 𝐠𝐚𝐫ç𝐨𝐧 𝐝𝐞𝐦𝐢– 𝐩. } 

6. Pour chaque lancer, on a un nombre sur le dé rouge et un autre sur le dé bleu. 
On peut avoir par exemple : « 2 rouge et 5 bleu » ou encore « 3 rouge et 3 bleu ». 
Chaque dé a six faces, donc il y a 6 × 6 = 𝟑𝟔 issues. 
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7. La somme de 2 dés est comprise entre 2 et 12, donc Ω = {𝟐; 𝟑; 𝟒;… ; 𝟏𝟏; 𝟏𝟐}. 

8. On dispose d’abord de 3 lettres pour le premier tirage, mais ensuite il n’en reste 
 plus que 2.

 

 

 

 

On peut donc former les 6 « mots » suivants : Ω = {𝑨𝑩;𝑨𝑩;𝑩𝑨;𝑩𝑪; 𝑪𝑨; 𝑪𝑩}. 

9. On tire deux boules, donc en notant V pour boule verte et R pour une boule 
rouge Ω = {𝐕𝐕;𝐑𝐕; 𝐕𝐑;𝐑𝐑}. Malgré le gain important des boules vertes, le 
risque est quand même grand de ne pas en tirer, surtout après avoir tiré une 
première boule verte : il ne reste alors plus qu’une verte et cinq rouges... Il faudra 
faire des calculs dans la partie suivante de la leçon. 
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1b. Événements 
Un événement est un regroupement d’issues. C’est un sous-ensemble de 
l’univers. On le note par une lettre, et on peut le décrire par une phrase. 

 

1. 𝐴 = {𝟐; 𝟒} et 𝐵 = {𝟒; 𝟓}. 

2. Comme vu précédemment, Ω = {𝟐; 𝟑; 𝟒;… ; 𝟏𝟏; 𝟏𝟐}. Ainsi : 
𝐴 = {𝟐; 𝟒; 𝟔; 𝟖; 𝟏𝟎; 𝟏𝟐}   𝐵 = {𝟐; 𝟑; 𝟒; 𝟓}  
𝐶 = {𝟑; 𝟔; 𝟗; 𝟏𝟐}    𝐷 = {𝟗}  

3. Il existe quatre cartes 7, donc 𝐴 = {𝟕 ♢, 𝟕 ♡, 𝟕 ♠, 𝟕 ♣} 
Il existe 12 cartes figures, donc 𝐵 comporte 12 issues, 
et la moitié des cartes, soit 26 cartes, est noire. Donc 𝐶 comporte 26 issues. 

4.  

 

 

 

Ainsi, Ω = {𝑷𝑷;𝑷𝑭; 𝑭𝑷; 𝑭𝑭} 
De plus, 𝐴 = {𝑷𝑷; 𝑭𝑭} et 𝐵 = {𝑷𝑷;𝑷𝑭; 𝑭𝑷}.  
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1c. Événement complémentaire 
• Le complémentaire d’un événement 𝐴, noté 𝐴̅ (on lit « non-𝐴 ») est 
l’événement contraire de 𝐴 : il est réalisé si et seulement si 𝐴 n’est pas 
réalisé.  
• Deux événements sont dits incompatibles s’ils ne peuvent pas se 
produire en même temps : ils n’ont aucune issue en commun. 

 
1. Le contraire de 𝐴 est 𝐴̅ : « obtenir moins de 5 ».Les issues sont 𝐴̅ = {𝟏; 𝟐; 𝟑; 𝟒}. 
De même, 𝐵̅ : « ne pas obtenir un multiple de 3 » et 𝐵̅ = {𝟏; 𝟐; 𝟒; 𝟓}. 
𝐶̅ : « ne pas obtenir 6 » et 𝐶̅ = {𝟏; 𝟐; 𝟑; 𝟒; 𝟓}. 

2. Pas forcément, le contraire est « il ne pleut pas », ce qui n’est pas équivalent à 
« il fait beau » (il peut neiger, ou le temps peut simplement être couvert…). 

3. a. 𝐴̅ : « obtenir moins de 7 » et 𝐴̅ = {𝟏; 𝟐; 𝟑; 𝟒; 𝟓; 𝟔}. 
𝐵̅ : « ne pas obtenir un multiple de 4 » et 𝐵̅ = {𝟏; 𝟐; 𝟑; 𝟓; 𝟔; 𝟕; 𝟗; 𝟏𝟎}. 
𝐶̅ : « obtenir un nombre pair » et 𝐶̅ = {𝟐; 𝟒; 𝟔; 𝟖; 𝟏𝟎}. 
b. 𝐴 et 𝐵 ne sont pas incompatibles, en effet, on peut obtenir 8, ce qui satisfait 𝐴 
et 𝐵 en même temps. 
𝐵 et 𝐶 sont incompatibles : aucun nombre multiple de 4 n’est impair, donc ces 
deux événements ne peuvent pas se produire en même temps. 

4. a. On se base sur l’arbre ci-contre : une fois qu’un chiffre 
  est tiré, il ne peut plus être tiré à nouveau.

Ω = {𝟏𝟐; 𝟏𝟑; 𝟐𝟏; 𝟐𝟑; 𝟑𝟏; 𝟑𝟐} 
b. 𝐴̅ : « obtenir un nombre pair » et 𝐴̅ = {𝟏𝟐; 𝟑𝟐}. 
𝐵̅ : « ne pas obtenir un nombre commençant par 3»  
et 𝐵̅ = {𝟏𝟐; 𝟏𝟑; 𝟐𝟏; 𝟐𝟑}. 
c. 𝐴 et 𝐵 ne sont pas incompatibles : ils sont réalisés si on obtient 12. 
d. Il s’agit d’un événement impossible. 
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1d. Union et intersection 
• L’intersection de 𝐴 et de 𝐵, notée 𝐴 ∩ 𝐵, est 
l’événement qui se réalise  
si 𝐴 et 𝐵 sont réalisés en même temps. 

• L’union de 𝐴 et de 𝐵, notée 𝐴 ∪ 𝐵, est 
l’événement qui se réalise  
si soit 𝐴, soit 𝐵, soit les deux sont réalisés. 

 

Exemple 1 a. 𝐴 = {𝟑; 𝟔; 𝟗; 𝟏𝟐; 𝟏𝟓; 𝟏𝟖} ; 𝐵 = {𝟒; 𝟖; 𝟏𝟐; 𝟏𝟔; 𝟐𝟎}  
et 𝐶 = {𝟏𝟓; 𝟏𝟔; 𝟏𝟕; 𝟏𝟖; 𝟏𝟗; 𝟐𝟎}. 
b. A ∩ B correspond aux issues qui sont à la fois dans A et B  𝑨 ∩ 𝑩 = {𝟏𝟐}. , donc
C ∩ A  correspond aux issues dans C, mais pas dans A  𝑪 ∩ 𝑨 = {𝟏𝟔; 𝟏𝟕; 𝟏𝟗; 𝟐𝟎}. .
B ∪ C correspond aux issues qui sont dans B ou dans C  , ou les deux.
𝑩 ∪ 𝑪 = {𝟒; 𝟖; 𝟏𝟐; 𝟏𝟓; 𝟏𝟔; 𝟏𝟕; 𝟏𝟖; 𝟏𝟗; 𝟐𝟎}. 

Exemple 2 𝑉 ∩ 𝑃 = {𝐯𝐚𝐥𝐞𝐭 ♠}         
𝑅 ∩ 𝑃̅ = {𝐫𝐨𝐢 ♡, 𝐫𝐨𝐢 ♢, 𝐫𝐨𝐢 ♣}  Ce sont les rois non-piques.
𝑅 ∪ 𝑃 = {𝐫𝐨𝐢 ♡, 𝐫𝐨𝐢 ♢, 𝐫𝐨𝐢 ♣, 𝐫𝐨𝐢 ♠, 𝐝𝐚𝐦𝐞 ♠, 𝐯𝐚𝐥𝐞𝐭 ♠} Ce sont les rois, et les autres 

   cartes piques.
𝑅̅ ∩ 𝑃 = {𝐝𝐚𝐦𝐞 ♠, 𝐯𝐚𝐥𝐞𝐭 ♠}  Ce sont les piques qui ne sont pas des rois.

Exemple 3 a. Les événements incompatibles sont 𝑩 et 𝑹 : un même élève ne peut 
pas porter à la fois un masque bleu, et un masque rouge. 
b. 𝐹̅ : « l’élève n’est pas une fille ». 
𝐵̅ : « l’élève ne porte pas de masque bleu » (il ne porte pas forcément de masque 
rouge). 
𝐹 ∩ 𝐵 : « l’élève est une fille portant un masque bleu ». 
𝐹̅ ∩ 𝑅̅ : « l’élève n’est pas une fille et ne porte pas de masque rouge ». 
𝐹 ∪ 𝐵 : « l’élève est une fille OU porte un masque bleu » (cela peut être par 
exemple une fille avec un masque rouge, ou un garçon avec un masque bleu). charly-piva.fr



2. Probabilité d’un événement 

2a. Définition 
Soit 𝐴 un événement. Sa probabilité, notée 𝑝(𝐴) ou 𝑃(𝐴), 
est un nombre compris entre 0 et 1.  
Plus elle est élevée, plus l’événement a des chances de se réaliser. 
• on peut la noter par un nombre, une fraction ou un pourcentage. 
• si 𝑝(𝐴) = 0, 𝐴 est un événement impossible. 
• si 𝑝(𝐴) = 1, 𝐴 est un événement certain. 

Définition : le cardinal d’un ensemble 𝐴, noté card(A), est le nombre 
d’éléments de cet ensemble. 
Propriété : si toutes les issues de l’univers Ω ont la même probabilité, on 
parle d’équiprobabilité. Dans ce cas : 

𝑝(𝐴) =
card(A)

card(Ω)
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Exemple 1  
L’événement 𝐴 correspond à trois issues (2, 4 et 6) sur les six issues possibles, 

donc (𝐴) =
𝟑
𝟔

 . On simplifie : 𝑝(𝐴) =
3
6
=
𝟏
𝟐

. 

L’événement 𝐵 ne correspond qu’à une issue sur les six, donc 𝑝(𝐵) =
𝟏
𝟔

. 

Exemple 2  
La roue est divisée en dix secteurs. Quatre de ces secteurs comportent un nombre 

pair, donc 𝒑(𝑨) =
4
10

=
𝟐
𝟓
= 𝟎, 𝟒 = 𝟒𝟎%. 

Aucun secteur ne comporte de nombre supérieur à 5, donc 𝐵 est un événement 
impossible et 𝒑(𝑩) = 𝟎. 

Exemple 3 

a. b. Il existe quatre parcours possibles. 
L’événement 𝐴 correspond à un seul parcours, 

donc 𝑝(𝐴) =
𝟏
𝟒
 

L’événement 𝐵 correspond à trois parcours, 

donc 𝑝(𝐵) =
𝟑
𝟒

 

 
Exemple 4 
On calcule d’abord le nombre total d’élèves : 7 + 11 + 9 + 6 = 𝟑𝟑 

• Il y a 18 filles au total, donc 𝑝(𝐹) =
𝟏𝟖
𝟑𝟑

 

• Il y a 17 demi-pensionnaires, donc 𝑝(𝐷) =
𝟏𝟕
𝟑𝟑

 

• La classe compte 15 garçons, donc 𝑝(𝐹̅) =
𝟏𝟓
𝟑𝟑

 

• Enfin, on compte 11 filles demi-pensionnaires, donc 𝑝(𝐹 ∩ 𝐷) =
𝟏𝟏
𝟑𝟑

=
1
3
 

Exemple 5 
a. Pour chacun des 6 résultats possibles du dé rouge, il existe 6 résultats 
possibles de dé bleu, donc le nombre d’issues est 6 × 6 = 𝟑𝟔. 
b. Cela correspond à une seule issue (les deux dés font un), donc la probabilité 

est  
𝟏
𝟑𝟔

 
c. Cela correspond à 6 issues (un et six ; deux et cinq ; trois et quatre ; quatre et 

trois ; cinq et deux ; six et un) donc la probabilité est  
𝟔
𝟑𝟔

=
1
6
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2b. Loi de probabilité 
Connaître la loi d’une expérience aléatoire, c’est connaître toutes les 
issues avec leur probabilité, qu’on donne sous forme de tableau. 

Remarque : la somme des probabilités de toutes les issues est 1. 

 

Exemple 1 
On calcule la probabilité de chaque couleur : par exemple, la probabilité de tirer 

une boule noire est  
𝟒
𝟏𝟎

= 0,4. On calcule les autres probabilités de même, en 

remarquant que le nombre de boules jaunes est 10 − (4 + 3 + 1) = 10 − 8 = 2. 
On établit le tableau suivant : 

Couleur Noire Rouge Bleue Jaune 
Probabilité 𝟎, 𝟒 𝟎, 𝟑 𝟎, 𝟏 𝟎, 𝟐 

 
Exemple 2 
a. Il nous manque juste le pourcentage de personnes du groupe O, mais on 
calcule 100 − (45 + 9 + 4) = 100 − 58 = 𝟒𝟐. 

Issue A B AB O 
Probabilité 𝟒𝟓% 𝟗% 𝟒% 𝟒𝟐% 
b. On calcule 𝑝(𝐴̅) = 1 − (0,09 + 0,04 + 0,42) = 0,55 ou 𝟓𝟓%. 
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Exemple 3 
a. On calcule 1 − (0,3 + 0,2 + 0,1) = 𝟎, 𝟒, ce qui permet de compléter le tableau. 
b. L’événement 𝐴 correspond à un temps d’attente de 10, 15 ou 20 minutes. 
Donc 𝑝(𝐴) = 0,2 + 0,1 + 0,4 = 𝟎, 𝟕 
L’événement 𝐴̅ ne correspond qu’à un temps d’attente de 5 minutes : 𝑝(𝐴̅) = 𝟎, 𝟑. 

Exemple 4 
a. Comme précédemment, la somme de toutes les probabilités étant 1 : 

1 − (
5

24
+
1

3
+
1

6
+
1

6
+

1

12
) 

= 1 −
5

24
−
1

3
−
1

6
−
1

6
−

1

12
 

On met toutes ces fractions au même dénominateur. 

=
24

24
−

5

24
−

8

24
−

4

24
−

4

24
−

2

24
 

=
𝟏
𝟐𝟒

 , cette fraction étant déjà simplifiée. 

b. • Les nombres pairs sont 2, 4 et 6. Ainsi : 

𝑝(𝐴) =
1

3
+

1

24
+

1

12
=

8

24
+

1

24
+

2

24
=
𝟏𝟏

𝟐𝟒
 

• De même, les nombres impairs étant 1, 3 et 5 : 

𝑝(𝐴̅) =
5

24
+
1

6
+
1

6
=

5

24
+

4

24
+

4

24
=
𝟏𝟑

𝟐𝟒
 

• Pour réaliser l’événement 𝐴 ∪ 𝐵, il faut obtenir 2, 4, 5 ou 6. Donc : 

𝑝(𝐴 ∪ 𝐵) =
1

3
+

1

24
+

1

12
+
1

6
=

8

24
+

1

24
+

2

24
+

4

24
=
𝟏𝟓

𝟐𝟒
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3. Opérations sur les probabilités 

3a. Complémentaire, union, intersection 
Soient 𝐴 et 𝐵 deux événements.  
• 𝑝(𝐴̅) = 1 − 𝑝(𝐴). 
• 𝑝(𝐴 ∪ 𝐵) + 𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) 
ou, de façon équivalente, 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵) 

 

Exemple 1 

• D’après la première formule, 𝑝(𝐴̅) = 1 − 𝑝(𝐴) = 1 −
11
20

=
20
20

−
11
20

=
𝟗
𝟐𝟎

 
• On applique l’autre formule pour calculer 𝑝(𝐴 ∪ 𝐵) 
= 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵) 

=
11

20
+
2

5
−

3

10
 

=
11

20
+

8

20
−

6

20
 

=
𝟏𝟑

𝟐𝟎
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Exemple 2 
• 𝑝(𝐴̅) = 1 − 𝑝(𝐴) = 1 − 0,4 = 𝟎, 𝟔 
• 𝑝(𝐵̅) = 1 − 𝑝(𝐵) = 1 − 0,22 = 𝟎, 𝟕𝟖 
• L’énoncé dit que 𝐴 et 𝐵 sont incompatibles, ce qui signifie que 𝑝(𝐴 ∩ 𝐵) = 0. 
𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵) = 0,4 + 0,22 − 0 = 𝟎, 𝟔𝟐 

Exemple 3 

a. • Un quart des cartes sont des trèfles, donc 𝑝(𝑇) =
𝟏
𝟒
 

• Le jeu de cartes comprend 12 figures, donc 𝑝(𝐹) =
12
52

=
𝟑
𝟏𝟑

 

• On applique la formule : 𝑝(𝐹̅) = 1 − 𝑝(𝐹) = 1 −
3
13

=
13
13

−
3
13

=
𝟏𝟎
𝟏𝟑

 
b. 𝑇 ∩ 𝐹 correspond à « la carte est une figure ET un trèfle ». 

Cela correspond à trois cartes (valet, dame et roi de trèfle), donc 𝑝(𝑇 ∩ 𝐹) =
𝟑
𝟓𝟐

 
c. 𝑇 ∪ 𝐹 correspond à « la carte est une figure OU un trèfle ». 
D’après la formule :        𝑝(𝑇 ∪ 𝐹) = 𝑝(𝑇) + 𝑝(𝐹) − 𝑝(𝑇 ∩ 𝐹) 

=
1

4
+

3

13
−

3

52
 

=
13

52
+
12

52
−

3

52
 

=
22

52
 

=
𝟏𝟏

𝟐𝟔
 

Exemple 4 

1. On compte 8 340 pièces acceptées sur les 10 000, donc 𝑝(𝐴) =
8 340
10 000

= 𝟎, 𝟖𝟑𝟒 

Ainsi, 𝑝(𝐴̅) = 1 − 𝑝(𝐴) = 1 − 0,834 = 𝟎, 𝟏𝟔𝟔 
2a. 𝐴 ∩ 𝐶 correspond à « la pièce est acceptée ET conforme ». 

Dans le tableau, cela correspond à 8 280 pièces. 𝑝(𝐴 ∩ 𝐶) =
8 280
10 000

= 𝟎, 𝟖𝟐𝟖 

2b. 𝐴 ∪ 𝐶 correspond à « la pièce est acceptée OU conforme ».  
On applique la formule. 𝑝(𝐴 ∪ 𝐶) = 𝑝(𝐴) + 𝑝(𝐶) − 𝑝(𝐴 ∩ 𝐶). 

Il nous faut d’abord calculer 𝑝(𝐶) =
9 000
10 000

= 0,9 

Ainsi, 𝑝(𝐴 ∪ 𝐶) = 0,834 + 0,9 − 0,828 = 𝟎, 𝟗𝟎𝟔 
2c. 𝐶 ∩ 𝐴̅ correspond à « la pièce est conforme ET n’est PAS acceptée ». 

Dans le tableau, cela correspond à 720 pièces. 𝑝(𝐶 ∩ 𝐴̅) =
720

10 000
= 𝟎, 𝟎𝟕𝟐 
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3b. Probabilité conditionnelle 
Soient 𝐴 et 𝐵 deux événements, avec 𝑝(𝐵) ≠ 0. 
On appelle probabilité conditionnelle de 𝐴 sachant 𝐵, notée 𝑝𝐵(𝐴), 
la probabilité que 𝐴 se réalise si on suppose que 𝐵 est réalisé. On a : 

𝑝𝐵(𝐴) =
𝑝(𝐴 ∩ 𝐵)

𝑝(𝐵)
=
card(𝐴 ∩ 𝐵)

card(𝐵)
 

Par produit en croix, on trouve 𝑝(𝐴 ∩ 𝐵) = 𝑝𝐵(𝐴) × 𝑝(𝐵). 

 

Exemple 1 
a. L’événement 𝐶 ∩ 𝑆 est : « l’élève tiré est en Seconde et mange à la cantine ». 

𝑝(𝐶 ∩ 𝑆) =
237

1 054
≈ 𝟐𝟐% 

b. • 𝑝𝑆(𝐶) est la probabilité qu’un élève tiré uniquement parmi les Seconde, 

mange à la cantine. 𝑝𝑆(𝐶)  =
237
359

≈ 𝟔𝟔% 

• 𝑝𝐶(𝑆) est la probabilité qu’un élève tiré parmi ceux qui mangent à la cantine 

soit en Seconde. 𝑝𝐶(𝑆) =
237
651

≈ 𝟑𝟔% 

c. On calcule 𝑝𝑇(𝐶) =
206
354

≈ 𝟓𝟖% < 66%.  La probabilité de tirer un élève 

mangeant à la cantine est, au contraire, plus faible parmi les Terminale. 
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Exemple 2 
a.  

 

 

b. 𝑝(𝐴) =
35
100

= 𝟑𝟓% ;  𝑝(𝐴 ∩ 𝐻) =
7
100

= 𝟕% et 𝑝(𝐴 ∩ 𝐻 ) =
28
100

= 𝟐𝟖%. 

c. 𝑝𝐻(𝐴) =
7
60

≈ 𝟏𝟐% 

d. 𝑝𝐻 (𝐴) =
28
40

≈ 𝟕𝟎%. Il s’agit de la probabilité qu’un membre qui ne 

pratique pas la peinture à l’huile, pratique l’aquarelle.  
 

 
 

  

 𝐴 𝐴̅ total 
𝐻 7 53 60 
𝐻  28 12 40 

total 35 65 100 
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3c. Arbres de probabilité 
On peut représenter une expérience par un arbre, notamment dans le 
cas où plusieurs tirages sont effectués. Pour trouver la probabilité d’un 
« parcours d’arbre », on multiplie les probabilités de ses branches. 

 

Exemple 1  

a. La probabilité de rencontrer un feu vert est : 
24

60
= 0,4 , celle de rencontrer un 

feu orange est 
3

60
= 0,05 et celle de rencontrer un feu rouge est : 

33

60
= 0,55 

On écrit toutes ces probabilités dans un arbre. 
 

 

 

 

 

 
 

b. On multiplie les probabilités des deux branches : 0,4 × 0,4 = 𝟎, 𝟏𝟔 

V 

O 

R 

V 

V 

V 

O 

R 

R 

R 

O 

O 

0,4 

0,05 

0,55 

0,4 

0,4 

0,4 

0,55 

0,55 

0,55 

0,05 

0,05 

0,05 
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Exemple 2 Ici, la probabilité n’est pas identique à chaque tirage. 

Par exemple, la probabilité que le premier pot soit rouge est  
6

10
 . 

Mais si le premier pot est rouge, il ne reste que 5 pots rouges sur 9 pots au total. La 

probabilité que le deuxième pot soit rouge aussi est donc 
5

9
 . 

On prend cela en compte au moment de réaliser l’arbre. 
 

 

 

 

 

 

La probabilité d’obtenir la couleur rouge est 
6

10
×
5

9
=

30

90
=

𝟏

𝟑
 

La probabilité d’obtenir la couleur jaune est 
4

10
×
3

9
=

12

90
=

𝟐

𝟏𝟓
 

On peut en déduire la probabilité d’obtenir la couleur orange : 

1 −
1

3
−

2

15
=
15

15
−

5

15
−

2

15
=

𝟖

𝟏𝟓
 

 

 

 

Exemple 3 On suppose que la probabilité de toucher la partie rouge ou la partie 
 bleue ne dépend que de l’aire de ces parties, que nous allons donc calculer.

La cible a un rayon de 40 cm, l’aire de la cible est donc 𝜋 × 40² = 1 600𝜋. 
L’aire de la partie bleue est 𝜋 × 20² = 400𝜋. 
Si la cible est touchée, la probabilité que ce soit sur la partie bleue est donc de 
400𝜋

1 600𝜋
=

𝟏

𝟒
  et ainsi la probabilité que ce soit la partie rouge est 

𝟑

𝟒
. 

Nous en déduisons l’arbre complet :  et la loi de probabilité : 

 

 

 

 

Couleur Rouge Orange Jaune 

Probabilité 
𝟏

𝟑
 

𝟐

𝟏𝟓
 

𝟖

𝟏𝟓
 

Résultat Manqué Rouge Bleue 

Probabilité 
𝟏

𝟑
 

2

3
×
3

4
=
𝟏

𝟐
 

2

3
×
1

4
=
𝟏

𝟔
 

T 

M 

R 

B 

𝟐

𝟑
 

𝟏

𝟑
 

𝟏

𝟒
 

𝟑

𝟒
 

R 

J 

R 

J 

J 

R 

𝟔

𝟏𝟎
 

𝟒

𝟏𝟎
 

𝟒

𝟗
 

𝟔

𝟗
 

𝟑

𝟗
 

𝟓

𝟗
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