
Chapitre 6 – PGCD, théorèmes de Bézout  
et de Gauss 

1. Plus grand diviseur commun 

1a. Définition 
Soient   et   deux entiers relatifs non tous nuls. 
L’ensemble des nombres qui divisent à la fois   et   admet un plus 
grand élément  , appelé plus grand diviseur commun. 
On le note           ,           ou bien    . 

Remarque : il existe aussi le plus petit multiple commun de deux 
nombres, noté           ou    . 

 

Exemple 1 
a. Les diviseurs de 30 sont                      
et les diviseurs de    sont               . 
Donc              . 
b. Les diviseurs de 150 sont                                   
et les diviseurs (positifs) de –240 sont 
                                                    
Donc                  . 
c. Les diviseurs de 84 sont                                 
et les diviseurs de 112 sont                            . 
Donc                . 

Exemple 2 
                                 
et                                                     . 
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1b. Nombres premiers entre eux 

Si            , on dit que   et   sont premiers entre eux. Cela veut 
dire que   et   n’ont pas d’autre diviseur positif commun que  . 

 

 

 

 

 

 

 

Exemple 1 Si     (      )    , cela signifie que   est divisible par 12. 

Il existe alors    tel que       . On a alors : 
               
                     
                   
               
Or         , donc les entiers    premiers avec 27 sont les nombres non 
multiples de 3, de la forme      ou     . 
Ainsi, les entiers        qui conviennent sont tous les nombres de la forme 
         ou          avec    . 
Ceux qui sont inférieurs à 100 sont :                    . 

Exemple 2  a. Comme            ,   et   sont multiples de 6. 
Il existe alors    et    entiers tels que       et      . 
Ainsi,                                          . 
De plus,                                     . 
Les seuls couples de nombres         dont le produit est 12, qui sont premiers 
entre eux et tels que       sont        et      . 
Or       et      , donc les couples       solution sont        et        . 
b. Comme            ,   et   sont multiples de 4. 
Il existe alors    et    entiers tels que       et      . 
Ainsi,                                          . 
De plus,                                       . 
Le seul couple de nombres         dont la somme est 6, qui sont premiers entre 
eux et tels que       est      . 
Or       et      , donc le couple       solution est       . 
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2. Algorithme d’Euclide 

2a. PGCD et reste 
Propriété : Soient   et   entiers. Soit   le reste dans la division 
euclidienne de   par  . Alors                    . 

Démonstration :  
Soit             et             . Il faut montrer que     . 
On pose        la division euclidienne de   par  . 
•   divise   et  , et        est une combinaison linéaire de   et  . 
Ainsi,   divise   (et  ) : on a     . 
•    divise   et  , et        est une combinaison linéaire de   et  . 
Ainsi,    divise   (et  ) : on a     . 
• Comme      et     , on en déduit que     . 
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2b. Algorithme d’Euclide 
Pour trouver          , on détermine les restes successifs de la 
division euclidienne de   par  , puis de   par  … et ainsi de suite jusqu’à 
obtenir un reste nul. 
Le      de   et   est alors le dernier reste non nul obtenu. 

 
Exemple 1 

•               
               
              
             
            
           
             
 

              
             
            
          
         
        

•               
              
             
            
           
             

             
            
          
         
        

 
Exemple 2 
                
                
               
                 

 
 
                
               
    131     

Donc 5 633 et 4 847 ne sont pas premiers entre eux, car ils sont multiples de 
131.  
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Exemple 3 
def pgcd(a,b) : 

  while b > 0 : 

    r = a % b 

    a = b 

    b = r 

  return a 

Exemple 4 

                 
                 
                 
                
             
            
             
 

                  
                 
                
               
          
         

Donc la fraction 
      

     
 n’est pas irréductible : on peut la simplifier par 4. 

Exemple 5  
Pour planter un minimum d’arbres, l’espacement entre les arbres doit être le plus 
grand possible : cela correspond au PGCD de la largeur et de la longueur. 

               
              
               
 

              
            
 

Ainsi, les arbres seront espacés de 42 m. 
Le périmètre total du terrain est                    m. 
Or            , donc on pourra planter au minimum 94 arbres. 
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3. Théorème de Bézout 

3a. Identité de Bézout 
Soient   et   non nuls. Alors il existe un couple d’entiers       tels que : 

                

Corollaire : Tout diviseur commun à   et   divise          . 
 

Démonstration de l’identité de Bézout : 
Soit   l’ensemble des combinaisons linéaires strictement positives de   et  , 
c’est-à-dire des nombres de la forme       avec     entiers. 
  est un ensemble d’entiers positifs non vide (par exemple, | |   ), donc il 
contient un plus petit élément, que l’on note  . 
   , donc il existe deux entiers   et   tels que        .  
Soit            . Montrons que    , cela prouvera la propriété. 
•   divise   et  , donc   divise        . Ainsi,    . 
• Montrons que   divise  .  
On effectue la division euclidienne de   par   :        avec      . 
Alors                                  
  est donc une combinaison linéaire de   et  . 
Si    , alors   serait un élément de  , or c’est absurde : par définition,   est le 
plus petit élément de   alors que      . 
Ainsi,    , et   divise  . 
On montre de même que   divise  . 
Ainsi,   divise   et  , donc     (  étant leur plus grand diviseur commun). 
Conclusion :     et    , on en déduit que    . 

Démonstration du corollaire : Soit  , un diviseur commun à   et  . 
Alors   divise toute combinaison linéaire de   et  . 
D’après l’identité de Bézout, le      de   et   est une combinaison linéaire de   
et de  . Donc   divise ce     . 

 

a. En appliquant l’algorithme d’Euclide, on trouve              . 
Or on peut se rappeler que        , donc on a               . 
Ainsi, le couple       est       . 
b. En appliquant l’algorithme d’Euclide, on trouve                . 
Ici, c’est un peu plus difficile, mais           et         . 
Donc                et le couple       est égal à       . 

charly-piva.fr



3b. Théorème de Bézout, algorithme d’Euclide étendu 
Les entiers   et   sont premiers entre eux si et seulement si il existe un 
couple d’entiers        tels que        . 

Remarque : Contrairement à l’identité de Bézout qui est une implication, 
on a ici une équivalence. 

Démonstration :  
  : si   et   sont premiers entre eux, alors leur      est  . 
D’après l’identité de Bézout, il existe   et   entiers tels que        . 
  : s’il existe   et   entiers tels que        , soit   un diviseur commun à   
et  . 
Alors   divise      , c’est à dire  . Le seul diviseur de   est  , donc    . On 
en en déduit que le plus grand diviseur commun à   et   est  . 

 
 

Exemple 1 

                      
                   

 
                    
                       
                 

 
                   
                                 
                 
Ainsi, on a           avec     et      . 
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Exemple 2 

                          
                     

 
                        
                             
                     

 
                     
                                     
                   
          
On trouve un reste nul, donc                 
et on a             avec     et      . 

Exemple 3 
       , donc            . 
Ainsi,        est un couple de Bézout       tel que          , donc 
d’après le théorème de Bézout, 33 et 65 sont premiers entre eux. 

Exemple 4 
Cherchons   et   tels que                  . 
Pour supprimer les termes en  , on peut prendre      et    . 
On a alors                              . 
Ainsi, il existe un couple de Bézout       tels que                  . 
Donc pour tout entier    , les nombres        et        sont premiers 
entre eux.  
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4. Théorème de Gauss 

4a. Énoncé 
Soient  ,   et   trois entiers non nuls. 
Si   divise le produit    et si   et   sont premiers entre eux, alors   
divise  . 

Autrement dit :    |    et                   |  

Démonstration :  |  , donc il existe   entier tel que      . 
D’après Bézout, il existe aussi   et   entiers tels que :  

        
On multiplie par   : 

          
           
            

donc  | . 

 

Exemple 1 
a. 5 divise le produit    et   et   sont premiers entre deux, donc d’après le 
théorème de Gauss,   divise  . 
Il existe alors   tel que     . Ainsi : 
                                   . 
Ainsi, les couples qui conviennent sont ceux de la forme           avec    . 
Ce sont par exemple                     … 
On vérifie bien que pour tout  , ces couples vérifient l’égalité. 
b.                          . 
Ainsi, pour tout couple       vérifiant l’égalité de la question a, le couple        
vérifie l’égalité de la question b.  
Ainsi, les couples correspondants sont ceux de la forme            avec   
 . 
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Exemple 2 
a. 7 divise le produit        et 7 et 5 sont premiers entre eux, donc d’après le 
théorème de Gauss, 7 divise      . 
Il existe alors   entier tel que              . 
On a alors                                      
      . 
Ainsi, les couples solution sont de la forme             avec    . 
Ce sont par exemple                    … 
On vérifie bien que pour tout  , ces couples vérifient l’égalité. 
b.                                           . 
Réciproquement, si        , alors          et          avec    . 
Ainsi, on en déduit avec la question a que         si et seulement si   est de la 
forme      avec    . 
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4b. Diviseurs premiers entre eux 
Corollaire : Soient  ,   et   trois entiers non nuls. 
Si   et   divisent  , et si   et   sont premiers entre eux, alors    divise  . 

Autrement dit :    |   et   |   et                    |  

Démonstration :  |  et  | , donc il existe   et    entiers tels que      et 
     .  
Ainsi,        donc   divise    . Or   et   sont premiers entre eux, donc d’après 
le théorème de Gauss,   divise   . 
Ainsi, il existe     tel que          
Or             et ainsi    divise  . 

 

 

 

Parmi  ,       et      , il existe nécessairement un multiple de 2, et un 
multiple de 3. 
Donc 2 et 3 divisent            . Or 2 et 3 sont premiers. 
D’après le corollaire du théorème de Gauss,       divise            .  
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4c. Équations diophantiennes linéaires 
Propriété : L’équation diophantienne        , d’inconnues   et  , 
admet des solutions si et seulement si   est un multiple de          . 

Démonstration : Soit            . 
  : supposons que l’équation         ait un couple solution      . 
• D’après le théorème de Bézout, il existe   et   entiers tels que : 

        
• D’autre part, on effectue la division euclidienne de   par   :        avec 
   . Ainsi,  

           
 

En additionnant les deux égalités obtenues :  
                       
                        

Or  ,   et   sont des multiples de  .  
  est donc un multiple de  , mais     par définition.  
Donc     et   est bien un multiple de  . 
 
  : si   est un multiple de  , 
alors il existe   entier tel que     . 
D’après l’identité de Bézout, il existe   et   entiers tels que  

        
En multipliant cette égalité par  , on trouve : 

             
Donc l’équation         a pour solution le couple          

 

Exemple 1 
a.    et 33 sont premiers entre eux, donc d’après l’identité de Bézout, il existe 
bien un couple d’entiers       tel que          . 
b. On pourrait appliquer l’algorithme d’Euclide étendu, mais on trouve assez 
facilement le couple      . 
c. On sait alors que          , mais aussi que            . 
On en déduit que                                  . 
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Ainsi,    divise le produit         mais 17 et 33 sont premiers entre eux, donc 
   divise      . Ainsi,                . 
Ainsi,                                          . 
Les solutions sont donc les couples de la forme              . 
On vérifie bien que                                    . 

Exemple 2 
29 et 13 sont premiers entre eux, donc il existe même des nombres    et    tels 
que            . L’algorithme d’Euclide étendu nous donne       et 
    . 

Ainsi, un couple solution de l’équation           est donc (        ), soit 

(       ). 

Soit (    ) un autre couple solution.  

On sait alors que                        
Donc                  . 
D’après le théorème de Gauss, 29 divise le produit         , donc 29 divise 
      . Ainsi,                   avec    . Par conséquent : 
                       
                  
          
         . 
Donc les couples solution sont de la forme                 avec    . 
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