Chapitre 6 - PGCD, théoremes de Bézout

et de Gauss

1. Plus grand diviseur commun

1a. Définition
Soient a et b deux entiers relatifs non tous nuls.

L’ensemble des nombres qui divisent a la fois a et b admet un plus

grand €élément d, appelé plus grand diviseur commun.
On le note PGCD(a, b) ,pgcd(a, b) ou bien a A b.

Remarque : il existe aussi le plus petit multiple commun de deux

nombres, noté PPCM (a; b) ouaV b.

Exemple 1 Apreés avoir dressé les listes des diviseurs positifs, calculer les PGCD suivants.
a. PGCD(30,18) b. PGCD(150,—240) c. PGCD(84,112)

Propriétés Pour a et b entiers relatifs, k entier naturel non nul :

« PGCD(a; b) = PGCD(b; a)

* PGCD(a; b) = PGCD(|al; |b]) lesigne de a et de b n"a pas d’influence sur le PGCD
* PGCD(a; 0) = |al 0 est multiple de a, car il est multiple de tout entier.
* Si b divise a (on note b|a), alors PGCD(a; b) = b.

« PGCD(ka; kb) = k x PGCD(a; b)

Exemple 2 On donne PGCD(296; 555) = 37. Calculer PGCD(—296; 555) et PGCD(1110; 592).

Exemple 1

a. Les diviseurs de 30 sont {1; 2; 3; 5; 6; 10; 15; 30}

et les diviseurs de 18 sont {1; 2; 3; 6; 9; 18}.

Donc PGCD(30;18) = 6.

b. Les diviseurs de 150 sont {1; 2; 3; 5; 6; 10; 15; 25; 30; 50; 75; 150}
et les diviseurs (positifs) de -240 sont

{1;2;3;4;6;8;10; 12; 15; 16; 20; 24; 30; 40; 60; 80; 120; 240}
Donc PGCD(150; —240) = 30.

c. Les diviseurs de 84 sont {1; 2; 3; 4;6; 7; 12; 14; 21; 28; 42; 84}
et les diviseurs de 112 sont {1;2;4; 7; 8; 14; 16; 28; 56; 112}.
Donc PGCD(84;112) = 28.

Exemple 2
PGCD(—296;555) = PGCD(296;555) = 37

et PGCD (1 110;592) = PGCD(2 X 555; 2 X 296) = 2 X PGCD(555;296) = 74.
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1b. Nombres premiers entre eux

Si PGCD(a,b) = 1, on dit que a et b sont premiers entre eux. Cela veut
dire que a et b n’ont pas d’autre diviseur positif commun que 1.

Remarques :

¢ Une fraction est irréductible si et seulement si son numérateur et son dénominateur sont premiers entre eux.
e Soient deux entiers a et b tels que PGCD(a; b) = k.

Dans ce cas, on sait qu’on peut « diviser a et b par k », autrement dit trouver deux entiers a’ et b’ tels que

a = ka'etbh = kb'.On a alors de plus PGCD(a’; b") = 1, donc a’ et b’ premiers entre eux.

Exemple 1
Déterminer tous les entiers naturels n tels que PGCD(n, 324) = 12.

En déduire, parmi ces entiers, tous ceux qui sont inférieurs a 100.

Exemple 2 Déterminer tous les entiers naturels a et b, avec a < b, tels que
a.ab = 432 et PGCD(a,b) = 6 b.a+ b =24 et PGCD(a,b) = 4.

Exemple 1 Si PGCD (n ; 324) = 12, cela signifie que n est divisible par 12.

Il existe alors n’ tel que n = 12n'. On a alors:

PGCD(n;324) =12

& PGCD(12n';12 x 27) =12

& 12 X PGCD(n';27) = 12

& PGCD(n';27) =1

Or 27 = 3 x 3 X 3, donc les entiers n’ premiers avec 27 sont les nombres non
multiples de 3, de la forme 3k + 1 ou 3k + 2.

Ainsi, les entiers n = 12n’ qui conviennent sont tous les nombres de la forme
12(3k+1)ou12(3k + 2) avec k € N.

Ceux qui sont inférieurs a 100 sont : {12; 24; 48; 60; 84; 96}.

Exemple 2 a. Comme PGCD(a; b) = 6, a et b sont multiples de 6.

Il existe alors a’ et b’ entiers tels que a = 6a’ et b = 6b’.

Ainsi, PGCD(a; b) = 6 & PGCD(6a’; 6b") = 6 < PGCD(a’; b') = 1.

De plus,ab = 432 & 6a’' X 6b' =432 < a’' X 6b' =72 < a'b’ = 12.

Les seuls couples de nombres (a’; b") dont le produit est 12, qui sont premiers
entre eux et tels que a’ < b’ sont (1;12) et (3;4).

Ora = 6a’ et b = 6b’, donc les couples (a; b) solution sont (6;72) et (18; 24).
b. Comme PGCD(a; b) = 4, a et b sont multiples de 4.

Il existe alors a’ et b’ entiers tels que a = 4a’ et b = 4b’.

Ainsi, PGCD(a; b) = 4 & PGCD(4a’; 4b") = 4 = PGCD(a’;b') = 1.
Deplus,a+b=24=4a"+4b' =24 = 4(a'"+b')=4x6=a +b' =6.
Le seul couple de nombres (a’; b") dont la somme est 6, qui sont premiers entre
eux et tels que a’ < b’ est (1;5).

Or a = 4a’ et b = 4b’, donc le couple (a; b) solution est (4; 20).
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2. Algorithme d’Euclide
2a. PGCD et reste

Proprieté : Soient a et b entiers. Soit r le reste dans la division
euclidienne de a par b. Alors PGCD(a,b) = PGCD (b, ).

Démonstration :

Soitd = PGCD(a,b) etd' = PGCD(b,r).1l faut montrer qued = d'.
On pose a = bq + r la division euclidienne de a par b.

e d divise a et b, et r = a — bq est une combinaison linéaire de a et b.
Ainsi, d divise r (et b):onad < d'.

e d' divise b et r, et a = bq + r est une combinaison linéaire de b et r.
Ainsi, d’ divise a (et b) :onad’ < d.

e Commed < d' etd <d,onendéduitqued = d'.
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2b. Algorithme d’Euclide

Pour trouver PGCD (a, b), on détermine les restes successifs de la
division euclidienne de a par b, puis de b par r... et ainsi de suite jusqu’a
obtenir un reste nul.

Le PGCD de a et b est alors le dernier reste non nul obtenu.

Remarque : Il existe un algorithme « par soustractions successives » plus lent, parfois étudié au collége, qui se
base sur le fait que PGCD(a, b) = PGCD(b,a — b).

Exemple 1 Calculer PGCD (144; 820) et PGCD(202; 138) a I'aide de I'algorithme d’Euclide, en détaillant les
divisions euclidiennes effectuées.

Exercice 2 A I'aide de I'algorithme d’Euclide, dire si les nombres 4 847 et 5 633 sont premiers entre eux.
Exercice 3 Donner le code d’une fonction Python pgcd (a, b) qui calcule le PGCD de a et b aveca > b.
Exercice 4 A 'aide de I'algorithme d’Euclide, déterminer PGCD(a,b) aveca = 18 440 et b = 9 828.
a
La fraction 5 est-elle irréductible ?
Exercice 5 Un terrain rectangulaire a pour dimensions 966 m et 1 008 m. &
Sur ses cotés, on veut planter des arbres régulierement espacés d’un nombre entier de metres.
Il doit y avoir un arbre a chaque c6té du terrain. Quel est le nombre minimum d’arbres que I'on pourra planter ?

Exemple 1

e PGCD(144;820) 820 =144 x5+ 100

= PGCD(144;100) 144 =100 x 1 + 44

= PGCD(100; 44) 100 =44 %2+ 12

= PGCD(44;12) 44 =12%x3+8

= PGCD(12;8) 12=8x1+4

= PGCD(8;4) 8=4%x2+4+0

= PGCD(4;0) = 4

e PGCD(202;138) 202 =138x 1+ 64

= PGCD(138;64) 138 =64x%x2+10

= PGCD(64;10) 64=10%x6+4

= PGCD(10;4) 10=4%x2+2

= PGCD(4; 2) 4=2%X2+0

= PGCD(2;0) =2

Exemple 2

PGCD(5633;4847) 5633 = 4847 x 1+ 786
= PGCD(4847;786) 4847 =786 X 6 + 131
= PGCD(786;131) 786 =131x 6+ 0

= PGCD(131;0) = 131
Donc 5 633 et 4 847 ne sont pas premiers entre eux, car ils sont multiples de
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Exemple 3

(a,b)
while b > 0
r =a % b
a b
b r
return a
Exemple 4
PGCD(18440;9828) 18440 = 9828 X1 + 8612
= PGCD(9828;8612) 0828 = 8612 x 1+ 1216
= PGCD(8612;1216) 8612 = 1216 x 7+ 100
= PGCD(1216;100) 1216 =100x%x 12 + 16
= PGCD(16;12) 16 =12x1+4
= PGCD(12;4) 12=4%Xx3+0
= PGCD(4;0) = 4
18 440

Donc la fraction 5828 n’est pas irréductible : on peut la simplifier par 4.

Exemple 5
Pour planter un minimum d’arbres, I'espacement entre les arbres doit étre le plus
grand possible : cela correspond au PGCD de la largeur et de la longueur.

PGCD(1008; 966) 1008 = 966 X 1 + 42
= PGCD(966; 42) 966 = 42 X 23+ 0
= PGCD(42;0) = 42

Ainsi, les arbres seront espacés de 42 m.
Le périmetre total du terrain est 2(1 008 + 966) = 3 948 m.
Or 3948 = 42 = 94, donc on pourra planter au minimum 94 arbres.
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3. Théoreme de Bézout

3a. Identité de Bézout

Soient a et b non nuls. Alors il existe un couple d’entiers (u; v) tels que :
au + bv = PGCD(a, b)

Corollaire : Tout diviseur commun a a et b divise PGCD (a, b).

Démonstration de I'identité de Bézout :

Soit £ 'ensemble des combinaisons linéaires strictement positives de a et b,
c’est-a-dire des nombres de la forme ax + by avec x, y entiers.

€ est un ensemble d’entiers positifs non vide (par exemple, |a| € &), doncil
contient un plus petit élément, que I’on note d.

d € &, donc il existe deux entiers u et v tels que d = au + bv.

Soit D = PGCD(a, b). Montrons que d = D, cela prouvera la propriéte.

e D divise a et b, donc D divise au + bv = d. Ainsi, D < d.

e Montrons que d divise a.

On effectue la division euclidiennede apard:a =dq +ravec0 <r < d.
Alorsr =a—dq =a— (au + bv)q = a(1 —uq) + b(—vq)

r est donc une combinaison linéaire de a et b.

Sir > 0, alors r serait un élément de &, or c’est absurde : par définition, d est le
plus petit élément de € alors que 0 < r < d.

Ainsi, r = 0, et d divise a.

On montre de méme que d divise b.

Ainsi, d divise a et b, donc d < D (D étant leur plus grand diviseur commun).
Conclusion:d < DetD < d, on en déduit qued = D.

Démonstration du corollaire : Soit d, un diviseur commun a a et b.

Alors d divise toute combinaison linéaire de a et b.

D’apres l'identité de Bézout, le PGCD de a et b est une combinaison linéaire de a
et de b. Donc d divise ce PGCD.

Exemples
a. Déterminer D, le PGCD de 42 et 15. Puis trouver deux nombres entiers u et v tels que 42u + 15v = D.

b. Méme question avec 180 et 75.

a. En appliquant I'algorithme d’Euclide, on trouve PGCD (42; 15) = 3.

Or on peut se rappeler que 3 X 15 = 45,doncona42 X (—1) + 15 X 3 = 3.
Ainsi, le couple (u; v) est (—1; 3).

b. En appliquant I'algorithme d’Euclide, on trouve PGCD(180; 75) = 15.
Ici, c’est un peu plus difficile, mais 2 X 180 = 360 et 5 X 75 = 375.

Donc —2 x 180 + 5 X 75 = 15 et le couple (u; v) est égal a (—2; 5).
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3b. Théoreme de Bézout, algorithme d’Euclide étendu

Les entiers a et b sont premiers entre eux si et seulement si il existe un
couple d’entiers (u,v) tels que au + bv = 1.

Remarque : Contrairement a l'identité de Bézout qui est une implication,
on a ici une équivalence.

Démonstration :

= :si a et b sont premiers entre eux, alors leur PGCD est 1.

D’apres l'identité de Bézout, il existe u et v entiers tels que au + bv = 1.

< :s'il existe u et v entiers tels que au + bv = 1, soit d un diviseur commun a a
et b.

Alors d divise au + bv, c’est a dire 1. Le seul diviseur de 1 est 1, doncd = 1. On
en en déduit que le plus grand diviseur commun a a et b est 1.

La démonstration prouve gu’il existe des entiers u et v tels que au + bv = 1, mais n’explique pas comment les
trouver. Pour cela, on utilise I'algorithme d’Euclide étendu : tout en appliquant I'algorithme d’Euclide, on réécrit

les divisions euclidiennes sous la forme = a — bq, et on injecte le reste dans la division euclidienne suivante.
On pourra donc toujours exprimer chaque reste successif en fonction de a et de b.

Exemple 1 Trouver le couple de Bézout de 47 et 25.

Cette méthode fonctionne aussi quand les nombres ne sont pas premiers entre eux.
Exemple 2 Trouver le couple de Bézout de 243 et 198.

Contrairement a I'identité de Bézout, le théoréme est une équivalence : si on parvient a obtenir une égalité
au + bv = 1, cela implique que a et b sont premiers entre eux.

Exemple 3 Démontrer que 33 et 65 sont premiers entre eux sans utiliser les diviseurs ou le PGCD.
Exemple 4 Démontrer que pour tout entier n, les entiers (2n + 1) et (3n + 2) sont premiers entre eux.

Exemple 1

47 =25x 1422 22 =47 -25x%x1
=1%Xx47—-1x%x25

25=22%x1+3 3=25-22x1
=25—-(1%x47—-1%x25)x%x1
= —1X47+ 25X 2

22=3X7+1 1=22-3X%x7

=(1x%x47—-1x%x25)—(—-1%x47+25%x2)x7
=8Xx47 —15%x 25
Ainsi,ona 47u + 25v =1avecu = 8etv = —15.

charly-piva.fr



Exemple 2

243 =198x1+45 45=243-198x1
=1X%x243 —-1Xx198

198 =45x4+18 18 =198—45x4
=198 — (1 X243 —1%x198) x 4
= —4 X243 +5x 198

45=18%Xx2+9 9=45-18 X% 2
= (1x243 —1x198) — (—4 X 243 + 5 x 198) X 2
=9x243 —-11 %198

18=9%x2+0

On trouve un reste nul, donc PGCD (243,198) = 9

etona243u+ 198v =9avecu =9etv = —11.

Exemple 3

33X 2=66,donc33x2—-65%x1=1.

Ainsi, (2; —1) est un couple de Bézout (u; v) tel que 33u + 65v = 1, donc
d’apres le théoreme de Bézout, 33 et 65 sont premiers entre eux.

Exemple 4

Cherchons u et v tels que u(2n + 1) + v(3n + 2) = 1.

Pour supprimer les termes en n, on peut prendre u = —3 etv = 2.
Onaalors-32n+1)+2(3n+2)=-6n—-3+6n+4=1.

Ainsi, il existe un couple de Bézout (u; v) telsque u(2n+ 1) + v(3n + 2) = 1.
Donc pour tout entier n € Z, les nombres (2n + 1) et (3n + 2) sont premiers
entre eux.
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4. Théoreme de Gauss

4a. Enoncé

Soient a, b et ¢ trois entiers non nuls.
Si a divise le produit bc et si a et b sont premiers entre eux, alors a
divise c.

Autrement dit: (a|bc et PGCD(a,b) = 1) = alc

Démonstration : a|bc, donc il existe k entier tel que bc = ka.
D’apres Bézout, il existe aussi u et v entiers tels que :
au+bv =1

On multiplie par c:

acu + bcv =c

< acu + kav =c¢

S a(cu+kv) =c
donc a|c.

Le théoréme de Gauss s’applique guand un nombre divise un produit alors qu’il est premier avec un des facteurs.

Exemple 1
a. Trouver tous les couples d’entiers relatifs (x; y) tels que 5(x — 1) = 7y.
b. En déduire les couples d’entiers relatifs (x; y) tels que 5x + 7y = 5.

Exemple 2
a. Déterminer les couples d’entiers relatifs (x; y) tels que 7(x — 3) = 5(y — 2).
b. En déduire les entiers relatifs x tels que 7x = 1[5].

Exemple 1

a. 5 divise le produit 7y et 5 et 7 sont premiers entre deux, donc d’apres le
théoreme de Gauss, 5 divise y.

Il existe alors k tel que y = 5k. Ainsi:

5c—1) =7y 5(x—-1)=5/x7Tkeosx—-1=7TksS x=T7k+1.

Ainsi, les couples qui conviennent sont ceux de la forme (7k + 1; 5k) avec k € Z.
Ce sont par exemple (1; 0); (8;5); (15; 10) ...

On vérifie bien que pour tout k, ces couples vérifient I'égalité.

b.5(x —1)=7y = 5x—-5=7y < 5x — 7y = 5.

Ainsi, pour tout couple (x; y) verifiant I'égalité de la question a, le couple (x; —y)
vérifie I'égalité de la question b.

Ainsi, les couples correspondants sont ceux de la forme (7k + 1; —5k) avec k €
Z.
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Exemple 2

a. 7 divise le produit 5(y — 2) et 7 et 5 sont premiers entre eux, donc d’apres le
théoreme de Gauss, 7 divise (y — 2).

Il existe alors k entiertelquey —2 =7k & y =7k + 2.

Onaalors7(x —3)=5(7k+2—-2) = 7x—21 =35k 7x =35k + 21
x = 5k + 3.

Ainsi, les couples solution sont de la forme (5k + 3; 7k + 2) avec k € N.

Ce sont par exemple (3;2); (8;9); (13; 16)...

On vérifie bien que pour tout k, ces couples vérifient I'égalite.

b.7(x —3)=5(y—-2) = 7x—21=5y-10 = 7x =5y + 11 = 7x = 1[5].
Réciproquement, si 7x = 1[5], alors 7x = 11[5] et 7x = 5k + 11 avec k € Z.
Ainsi, on en déduit avec la question a que 7x = 1[5] si et seulement si x est de la
forme 5k + 3 avec k € Z.
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4b. Diviseurs premiers entre eux

Corollaire : Soient a, b et c trois entiers non nuls.
Si b et c divisent a, et si b et ¢ sont premiers entre eux, alors bc divise a.

Autrement dit: (b|a et cla et PGCD(b,c) = 1) = bc|a

Démonstration : b|a et c|a, donc il existe k et k' entiers tels que a = kb et
a=kec.

Ainsi, kb = k'c donc b divise k'c. Or b et ¢ sont premiers entre eux, donc d’apres
le théoréme de Gauss, b divise k'.

Ainsi, il existe k' tel que k' = k''b.

Ora = k'c = k''bc et ainsi bc divise a.

Remarque Il est nécessaire que b et ¢ soient premiers entre eux.
Ainsi, 6|12 et 4|12, mais 6 et 4 ne sont pas premiers entre eux. Dailleurs, 6 X 4 = 24 et on n’a pas 24|12...
En revanche, 3|75 et 5|75, et 3 et 5 sont premiers entre eux, donc 15|75.

Exemple Soit n un entier naturel. Montrer que n(n + 1)(n + 2) est divisible par 6.

Parmin, (n + 1) et (n + 2), il existe nécessairement un multiple de 2, et un
multiple de 3.

Donc 2 et 3 divisent n(n + 1)(n + 2). Or 2 et 3 sont premiers.

D’apres le corollaire du théoreme de Gauss, 3 X 2 = 6 divisen(n + 1)(n + 2).
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4c. Equations diophantiennes linéaires

Propriété : L’équation diophantienne ax + by = ¢, d'inconnues x et y,
admet des solutions si et seulement si ¢ est un multiple de PGCD(a, b).

Démonstration : Soit D = PGCD(a, b).
= : supposons que I’équation ax + by = c ait un couple solution (x, y).
e D’apres le théoreme de Bézout, il existe u et v entiers tels que :
au+ bv =D
e D’autre part, on effectue la division euclidienne de ¢ par D : ¢ = Dq + r avec
r < D. Ainsi,
ax +by=Dq+r

En additionnant les deux égalités obtenues :
alu+x)+b(v+y)=D(q+1)+r
Sr=alu+x)+b(v+y)—-D({@+1)

Or a, b et D sont des multiples de D.

r est donc un multiple de D, mais r < D par définition.

Doncr = 0 et ¢ est bien un multiple de D.

& :si c est un multiple de D,
alors il existe k entier tel que ¢ = kD.
D’apres l'identité de Bézout, il existe u et v entiers tels que
au+bv =D
En multipliant cette égalité par k, on trouve :
aku + bkv = kD = ¢
Donc I'équation ax + by = c a pour solution le couple (ku, kv).

Si on dispose d’une solution particuliére, le théoréme de Gauss permet d’en déduire toutes les autres.

Exemple 1 Soit I'équation (E) avaleursdans Z : 17x — 33y = 1.

a. Démontrer que cette équation admet des solutions.

b. Déterminer une solution particuliére de I'équation (E).

c. Soit une autre solution (x; y). A I'aide de la question b, établir une égalité permettant d’appliquer le théoréme

de Gauss. En déduire toutes les solutions de (E). Vérifier que les solutions trouvées conviennent.

Exemple 2 Déterminer toutes les solutions de I'équation (E):29x + 13y = 6

Exemple 1

a. 17 et 33 sont premiers entre eux, donc d’apres I'identité de Bézout, il existe

bien un couple d’entiers (x; y) tel que 17x — 33y = 1.

b. On pourrait appliquer 'algorithme d'Euclide étendu, mais on trouve assez

facilement le couple (2; 1).

c. On sait alors que 17x — 33y = 1, maisaussique 17 X 2 —33 x 1 = 1.

On en déduitque 17x — 33y =17 %x2-33 X1 < 17(x — 2) = 33(y — 1).
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Ainsi, 17 divise le produit 33(y — 1) mais 17 et 33 sont premiers entre eux, donc
17 divise (y — 1). Ainsi, y—1 =17k & y = 17k + 1.

Ainsi, 17(x —2) =33(17k+1—-1) © 17x —34 =33 X 17k & x = 33k + 2.
Les solutions sont donc les couples de la forme (33k + 2; 17k + 1).

On vérifie bien que 17x — 33y = 17(33k + 2) —33(17k+ 1) =34 —-33 = 1.

Exemple 2

29 et 13 sont premiers entre eux, donc il existe méme des nombres x’ et y' tels
que 29x" + 13y’ = 1. L’algorithme d’Euclide étendu nous donne x’ = —4 et

y' =0.

Ainsi, un couple solution de I'équation 29x + 13y = 6 est donc (6x’ ; 6y’), soit
(—24;54).

Soit (x ; y) un autre couple solution.

On sait alors que 29x + 13y = 29 X (—24) + 13 X 54

Donc 29(x + 24) = 13(54 — y).

D’apreés le théoréme de Gauss, 29 divise le produit 13(54 — y), donc 29 divise
(54 — y). Ainsi, 54 — y = 29k & y = 54 — 29k avec k € Z. Par conséquent :
29(x + 24) = 13(54 — 54 + 29k)

& 29x + 29 X 24 = 13 X 29k

& x+ 24 =13k

< x = 13k — 24.

Donc les couples solution sont de la forme (13k — 24; 54 — 29k) avec k € Z.
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