
Chapitre 3 – Divisibilité et congruence 
 

 

 

 

 

 

 

 

1. Divisibilité 

1a. Définition 
Soient 𝑎, 𝑏 ∈ ℤ. On dit que 𝑎 divise 𝑏, s’il existe un entier relatif 𝑘 tel que 
𝑏 = 𝑘𝑎. On note alors 𝑎|𝑏. 

 

Exemple 1 Les diviseurs de 12 dans ℕ sont 1 ; 2 ; 3 ; 4 ; 6 et 12. 
Les diviseurs de (−45) dans ℤ sont : 1 ; 3 ; 5 ; 9 ; 15 ; 45 et, du coup,  
-1 ; -3 ; -5 ; -9 ; -15 ; -45. Généralement, on trouve les diviseurs par paire : la 
multiplication 3 × 15 = 45   nous permet de trouver 3 et 15 d’un coup.
Exemple 2 Soit 𝑛 un nombre pair. Il existe alors 𝑘 ∈ ℤ tel que 𝑛 = 2𝑘. 
Donc 𝑛² = (2𝑘)2 = 2² × 𝑘² = 4𝑘², ainsi 𝒏² est multiple de 𝟒. 
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1b. Premières applications 
Propriété : soient 𝑎, 𝑏 𝑒𝑡 𝑐 ∈ ℤ. 
Si 𝑎 divise 𝑏 et 𝑐, alors 𝑎 divise toute combinaison linéaire de 𝑏 et 𝑐 : 
pour tous 𝑚, 𝑛 ∈ ℤ, 𝑎 divise (𝑚𝑏 + 𝑛𝑐) 

Démonstration : Si 𝑎|𝑏 et 𝑎|𝑐, alors il existe 𝑘 et 𝑘′ relatifs tels que 𝑏 = 𝑘𝑎 et 
𝑐 = 𝑘′𝑎. Donc 𝑚𝑏 + 𝑛𝑐 = 𝑚𝑘𝑎 + 𝑛𝑘′𝑎 = 𝑎(𝑚𝑘 + 𝑛𝑘′). Ainsi 𝑎 divise 𝑚𝑏 + 𝑛𝑐. 

 

Exemple 1 Il s’agit de factoriser (𝑛2 + 8𝑛 + 7) par (𝑛 + 1). 
D’une façon générale, pour montrer que a divise b, il faut factoriser b par a  .
    𝑛2 + 8𝑛 + 7 = 𝑛2 + 2𝑛 + 1 + 6𝑛 + 6 = (𝑛 + 1)2 + 6(𝑛 + 1) 

= (𝑛 + 1)((𝑛 + 1) + 6) = (𝒏 + 𝟏)(𝒏 + 𝟕) 

Exemple 2 a. (𝑛 − 3) divise (2𝑛 + 5) s’il existe 𝑘 entier tel que : 
2𝑛 + 5 = 𝑘(𝑛 − 3) 
⟺ 2𝑛 + 5 = 𝑘𝑛 − 3𝑘 
⟺ 𝑘𝑛 − 3𝑘 − 2𝑛 = 5 
⟺ 𝑘(𝑛 − 3) − 2𝑛 = 5 

On cherche à factoriser le membre de gauche par (𝑛 − 3). 
⟺ 𝑘(𝑛 − 3) − 2𝑛 + 6 = 5 + 6 
⟺ 𝑘(𝑛 − 3) − 2(𝑛 − 3) = 11 
⟺ (𝑘 − 2)(𝑛 − 3) = 11 

11 est premier, il admet 1 ; 11 ; −1 et −11 pour diviseurs. 
On peut donc avoir :  • 𝑛 − 3 = 11, soit 𝑛 = 14     • 𝑛 − 3 = 1, soit 𝑛 = 4  
      • 𝑛 − 3 = −1, soit 𝑛 = 2     • 𝑛 − 3 = −11, soit 𝑛 = −8 ∉ ℕ 

Ainsi 𝑺 = {𝟐; 𝟒 ; 𝟏𝟒}. 

b. La fraction est un entier si (𝑛 + 17) divise (𝑛 − 4), c’est-à-dire s’il existe 𝑘 
entier tel que            𝑛 + 17 = 𝑘(𝑛 − 4) 

⟺ 𝑘(𝑛 − 4) − 𝑛 = 17 
⟺ 𝑘(𝑛 − 4) − 𝑛 + 4 = 17 + 4 
⟺ (𝑛 − 4)(𝑘 − 1) = 21 

21 admet 1; 3; 7 et 21 pour diviseurs. Il y a quatre possibilités : 
• 𝑛 − 4 = 1, soit 𝑛 = 5    • 𝑛 − 4 = 3, soit 𝑛 = 7 
• 𝑛 − 4 = 7, soit 𝑛 = 11   • 𝑛 − 4 = 21, soit 𝑛 = 25 
Ainsi 𝑺 = {𝟓; 𝟕; 𝟏𝟏; 𝟐𝟓} 
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1c. Équations diophantiennes 
Une équation diophantienne est une équation portant sur des nombres 
entiers. 

 

a. 𝑥² = 2𝑥𝑦 + 15 ⟺ 𝑥2 − 2𝑥𝑦 = 15 ⟺ 𝑥(𝑥 − 2𝑦) = 15 
15 admet pour diviseurs naturels 1; 3; 5 et 15.  
De plus, dans les entiers naturels, on a 𝑥 > 𝑥 − 2𝑦. 
Il y a donc deux possibilités : 

• {
𝑥 = 15        
𝑥 − 2𝑦 = 1

⟺ {
𝑥 = 15
𝑦 = 7  

   • {
𝑥 = 5          
𝑥 − 2𝑦 = 3

⟺ {
𝑥 = 5
𝑦 = 1

 

Ainsi, 𝑺 = {(𝟏𝟓; 𝟕); (𝟓; 𝟏)} 
b. 𝑥² = 𝑦² + 20 ⟺ 𝑥2 − 𝑦2 = 20 ⟺ (𝑥 + 𝑦)(𝑥 − 𝑦) = 20 
20 admet pour diviseurs naturels 1; 2; 4; 5; 10 et 20.  
De plus, dans les entiers naturels, on a 𝑥 + 𝑦 > 𝑥 − 𝑦. 
Il y a donc trois possibilités : 

• {
𝑥 + 𝑦 = 20
𝑥 − 𝑦 = 1

⟺ {
𝑥 = 20 − 𝑦

(20 − 𝑦) − 𝑦 = 1
⟺ {

𝑥 = 20 − 𝑦
−2𝑦 = −19

⟺ {
𝑥 = 10,5
𝑦 = 9,5

  

• {
𝑥 + 𝑦 = 10
𝑥 − 𝑦 = 2

⟺ {
𝑥 = 10 − 𝑦

(10 − 𝑦) − 𝑦 = 2
⟺ {

𝑥 = 10 − 𝑦
−2𝑦 = −8

⟺ {
𝑥 = 6
𝑦 = 4

  

• {
𝑥 + 𝑦 = 5
𝑥 − 𝑦 = 4

⟺ {
𝑥 = 5 − 𝑦

(5 − 𝑦) − 𝑦 = 4
⟺ {

𝑥 = 5 − 𝑦
−2𝑦 = −1

⟺ {
𝑥 = 4,5
𝑦 = 0,5

   

La seule solution comportant des entiers naturels est (𝟔; 𝟒) 
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1d. Division euclidienne 
Définition : soient 𝑎 ∈ ℤ et 𝑏 ∈ ℕ non nul. On appelle division 
euclidienne de 𝑎 par 𝑏, l’opération qui au couple (𝑎; 𝑏) 
associe l’unique couple (𝑞; 𝑟) tel que 𝑎 = 𝑏𝑞 + 𝑟 avec 0 ≤ 𝑟 < 𝑏 

 

a. On trouve 𝟏𝟏𝟒 = 𝟕 × 𝟏𝟔 + 𝟐, donc 𝑞 = 16 et 𝑟 = 2. 
On en déduit que −114 = −7 × 16 − 2, mais ce n’est pas la division euclidienne 
car le reste doit être positif et inférieur à 𝟕. Mais :  

−114 = −7 × 16 − 2 
= 7 × (−16) − 2 + 7 − 7 
= 7 × (−17) + 5 

ainsi 𝒒 = −𝟏𝟕 et 𝒓 = 𝟓. 
b. La consigne se reformule ainsi : 𝑛 = 5𝑞 + 𝑟, or 𝑞 = 3𝑟,  
donc 𝑛 = 5 × 3𝑟 + 𝑟 = 15𝑟 + 𝑟 = 16𝑟. 
Il s’agit d’une division par 5, donc 𝑟 ∈ {0; 1; 2; 3; 4}. 
Ainsi, 𝑺 = {𝟎; 𝟏𝟔; 𝟑𝟐; 𝟒𝟖; 𝟔𝟒} 
c. On a 𝑎 = 𝑏𝑞 + 8 et 2𝑎 = 𝑏𝑞′ + 5, les quotients 𝑞 et 𝑞′ n’étant pas les mêmes. 
Comme 𝑎 = 𝑏𝑞 + 8, alors 2𝑎 = 2𝑏𝑞 + 16. 
Donc 𝑏𝑞′ + 5 = 2𝑏𝑞 + 16 ⟺ 𝑏𝑞′ − 2𝑏𝑞 = 11 ⟺ 𝑏(𝑞′ − 2𝑞) = 11 
Les diviseurs de 11 étant 1 et 11, donc 𝑏 ne peut prendre que ces deux valeurs. 
Mais si 𝑏 était égal à 1, le reste ne pourrait être 8 ou 5. 
Donc 𝒃 = 𝟏𝟏. 
d. On sait que 439 = 13𝑏 + 𝑟 

Comme 
439

13
≈ 33,8 on peut chercher les valeurs de 𝑏 inférieures ou égales à 33 

(pour avoir un reste positif).  
• si 𝑏 = 33, 439 = 13 × 33 + 10 et 𝑟 = 10 
• si 𝑏 = 32, 439 = 13 × 32 + 23 et 𝑟 = 23 
• si 𝑏 = 31, 439 = 13 × 31 + 23 et 𝑟 = 36, or on a alors 𝑟 > 𝑏. 
Ainsi, les valeurs possibles pour (𝑏; 𝑟) sont (𝟑𝟑; 𝟏𝟎) et (𝟑𝟐; 𝟐𝟑). 

  

charly-piva.fr



2. Congruences 

2a. Définition 
Définition : soient 𝑎, 𝑏 ∈ ℤ et 𝑛 ∈ ℕ non nul. 
On dit que 𝑎 et 𝑏 sont congrus modulo 𝑛 s’ils ont le même reste dans la 
division euclidienne par 𝑛. 
On note alors 𝑎 ≡ 𝑏[𝑛], mais aussi 𝑎 ≡ 𝑏(𝑛) ou 𝑎 ≡ 𝑏 mod 𝑛 

 

23 ≡ 48[5] car lorsqu’on divise ces deux nombres par 5, le reste est le même : 3. 
a. 16 ≡ 2 ≡ −5 ≡ 44[7] 
b. 101 ≡ 11 ≡ −4 ≡ 56[15] 
c. 8 ≡ 0 ≡ −4 ≡ 40[4] 
d. −1 ≡ 5 ≡ 11 ≡ −7[6] 
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2b. Opérations 
Propriété : soient 𝑎, 𝑏 ∈ ℤ et 𝑛 ∈ ℕ non nul. 

𝑎 ≡ 𝑏[𝑛] ⇔ 𝑎 − 𝑏 ≡ 0[𝑛] 
Deux nombres sont congrus modulo 𝑛 si leur différence est un multiple 
de 𝑛. 

Démonstration : 
⟹ Supposons que 𝑎 ≡ 𝑏[𝑛] 
Il existe alors 𝑞 et 𝑞′ tels que 𝑎 = 𝑛𝑞 + 𝑟 et 𝑏 = 𝑛𝑞′ + 𝑟 
Donc 𝑎 − 𝑏 = (𝑛𝑞 + 𝑟) − (𝑛𝑞′ + 𝑟) = 𝑛𝑞 − 𝑛𝑞′ = 𝑛(𝑞 − 𝑞′) 
𝑎 − 𝑏 est alors un multiple de 𝑛, donc 𝒂 − 𝒃 ≡ 𝟎[𝒏]. 
⟸ Supposons que 𝑎 − 𝑏 ≡ 0[𝑛] 
𝑎 − 𝑏 est alors multiple de 𝑛 : il existe 𝑘 tel que 𝑎 − 𝑏 = 𝑛𝑘. 
Ainsi, dans la division euclidienne de 𝑎 − 𝑏 par 𝑛, le reste est 0. 
Effectuons la division de 𝑎 par 𝑛 : 𝑎 = 𝑛𝑞 + 𝑟. Donc   

𝑎 − 𝑏 = 𝑛𝑘 
⟺ 𝑛𝑞 + 𝑟 − 𝑏 = 𝑘𝑛 
⟺ 𝑏 = 𝑛𝑞 − 𝑛𝑘 + 𝑟 
⟺ 𝑏 = 𝑛(𝑞 − 𝑘) + 𝑟 

Ainsi, 𝑎 et 𝑏 ont le même reste 𝑟 quand on les divise par 𝑛, et 𝒂 ≡ 𝒃[𝒏]. 
 

Propriétés : soient 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ et 𝑛 ∈ ℕ non nul. 
• si 𝑎 ≡ 𝑏[𝑛] et 𝑐 ≡ 𝑑[𝑛], alors 𝑎 + 𝑐 ≡ 𝑏 + 𝑑[𝑛]  
       et  𝑎𝑐 ≡ 𝑏𝑑[𝑛] 
• si 𝑎 ≡ 𝑏[𝑛] et 𝑘 ∈ ℕ,   alors 𝑎𝑘 ≡ 𝑏𝑘[𝑛] 
La congruence est compatible avec l’addition, la multiplication et les 
puissances. 

Démonstration : • si 𝑎 ≡ 𝑏[𝑛] et 𝑐 ≡ 𝑑[𝑛], alors (𝑎 − 𝑏) et (𝑐 − 𝑑) sont multiples 
de 𝑛 d’après la propriété précédente. 
Ainsi, (𝑎 − 𝑏) + (𝑐 − 𝑑) = (𝑎 + 𝑐) − (𝑏 + 𝑑) est multiple de 𝑛 et donc  
𝒂 + 𝒄 ≡ 𝒃 + 𝒅[𝒏] d’après la propriété. 
• si 𝑎 ≡ 𝑏[𝑛] et 𝑐 ≡ 𝑑[𝑛], alors 𝑎 = 𝑞𝑛 + 𝑏 et 𝑐 = 𝑞′𝑛 + 𝑑. 
On multiplie ces deux égalités : 
𝑎𝑐 = (𝑞𝑛 + 𝑏)(𝑞′𝑛 + 𝑑) 
= 𝑞𝑛𝑞′𝑛 + 𝑞𝑛𝑑 + 𝑞′𝑛𝑏 + 𝑏𝑑 
= 𝑛(𝑞𝑞′𝑛 + 𝑞𝑑 + 𝑞′𝑏) + 𝑏𝑑 
On a montré que la différence entre 𝑎𝑐 et 𝑏𝑑 est aussi un multiple de 𝑛, donc 
𝒂𝒄 ≡ 𝒃𝒅[𝒏] 
• la compatibilité avec les puissances se montre facilement par récurrence. 
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Exemple 1 
47 ≡ 𝟐[9] et 58 ≡ 𝟒[9], donc 47 + 58 ≡ 𝟔[9] et 47 × 58 ≡ 𝟖[9]. 

Exemple 2  
a. On sait que 16 ≡ 7[9], donc 162 ≡ 7² ≡ 49 ≡ 4[9]  
Puis par produit, 163 ≡ 162 × 16 ≡ 4 × 2 ≡ −1[9].  
Ainsi, 166 ≡ (163)2 ≡ (−1)2 ≡ 𝟏[𝟗] 
Dans les congruences, on adore trouver 1 ! 
b. 1619 ≡ (166)3 × 16 ≡ 13 × 16 ≡ 16 ≡ 7[9]. 
Ainsi, le reste de la division euclidienne de 𝟏𝟔𝟏𝟗 par 𝟗 est 𝟕. 

Exemple 3  
Il s’agit de déterminer le reste de 32023 dans la division par 10. 
On sait que 34 ≡ 81 ≡ 1[10]. 
Donc 32023 ≡ 32020 × 33 ≡ (34)505 × 33 ≡ 1505 × 33 ≡ 27 ≡ 7[10]. 
Le chiffre des unités de 𝟑𝟐𝟎𝟐𝟑 est 𝟕. 

Exemple 4  
25 − (−1) = 26 qui est un multiple de 13,  donc 25 ≡ −1[13] 
Soit 𝑛 entier naturel. 54𝑛 = (54)𝑛 = ((52)2)𝑛 = (252)𝑛 
Ainsi, 54𝑛 ≡ (252)𝑛 ≡ ((−1)2)𝑛 ≡ 1𝑛 ≡ 1[13] 
Donc 54𝑛 − 1 ≡ 0[13] et 𝟓𝟒𝒏 − 𝟏 est divisible par 𝟏𝟑. 
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2c. Raisonnement par disjonction de cas 
Définition : lorsque dans une démonstration, on essaie de traiter 
séparément différentes possibilités (par exemple, pair/impair, ou 
suivant la congruence d’un nombre), on fait de la disjonction de cas. 

 

Exemple 1 
a. Il s’agit de vérifier que 𝑛(𝑛 + 1) est pair pour tout entier 𝑛. 
• Si 𝑛 est pair, c’est le cas. 
• Si 𝑛 est impair, alors (𝑛 + 1) est pair et donc 𝑛(𝑛 + 1) aussi. 
b. • Si 𝑛 est pair, alors 5𝑛² et 3𝑛 sont également pairs et 5𝑛² + 3𝑛 aussi. 
• Si 𝑛 est impair, alors 5𝑛² et 3𝑛 sont également impairs. 
Leur somme 5𝑛² + 3𝑛 est donc paire. 

Exemple 2 

𝑛 ≡ ⋯ [7] 0 1 2 3 4 5 6 
𝑛² ≡ ⋯ [7] 0 1 4 2 2 4 1 

Les solutions de l’équation 𝑛² ≡ 2[7] sont donc les nombres 𝑛 tels que 𝑛 ≡ 3[7] 
ou 𝑛 ≡ 4[7],  c’est-à-dire les nombres de la forme 𝟕𝒌 + 𝟑 ou 𝟕𝒌 + 𝟒 avec 𝑘 entier. 
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Exemple 3  
a. On remplit le tableau en multipliant chaque case de la deuxième ligne par 3 
pour obtenir la suivante. 

𝑛 ≡ ⋯ [5] 0 1 2 3 4 

3𝑛 ≡ ⋯ [11] 1 3 9 5 4 

On constate ensuite que 35 ≡ 1[11], donc les résultats suivants seront les mêmes 
que les 5 premiers. 
b. On ajoute une ligne au tableau : 
 

 
 

Les solutions sont donc les nombres 𝑛 tels que 𝒏 ≡ 𝟒[𝟓]. 

c. 135 = 3 × 45, or 45 ≡ 1[11]. 
Ainsi, 1352021 ≡ 32021 × 452021 ≡ 32021[11] 
et d’après la question a, 𝟑𝟐𝟎𝟐𝟏 ≡ 𝟑[𝟏𝟏]. 

Exemple 4 
 

 

 
 

Les solutions sont donc les nombres 𝑛 tels que 𝒏 ≡ 𝟒[𝟓].  

3𝑛 + 7 ≡ ⋯ [11] 8 10 5 1 0 

𝑛 ≡ ⋯ [5] 0 1 2 3 4 

4𝑛 ≡ ⋯ [11] 1 4 5 9 3 

3 × 4𝑛 + 2 ≡ ⋯ [11] 5 3 6 8 0 
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2d. Critères de divisibilité 
Propriété : soit 𝑎 ∈ ℕ, un nombre à 𝑚 chiffres en écriture décimale. 
Alors : 

𝑎 = ∑ 𝑎𝑘 × 10𝑘

𝑚−1

𝑘=0

 

où les nombres 𝑎0 ; 𝑎1 ; … ; 𝑎𝑚−1 sont les chiffres de 𝑎. 

Exemple : 1 789 = 1 × 103 + 7 × 10² + 8 × 101 + 9 × 100 

 

Exemple 1 Soit 𝑛 entier naturel. 
On s’intéresse à la division euclidienne de ce nombre par 100. 

𝑛 = 100𝑞 + 𝑟 
où 100𝑞 est multiple de 4 et 𝑟 correspond aux deux derniers chiffres de 𝑛. Ainsi, 
𝑛 ≡ 𝑟[4], et 𝑛 est multiple de 4 ssi ses deux derniers chiffres le sont. 

Exemple 2 a. On a 10 ≡ 1[3] donc pour tout 𝑘 entier naturel, 10𝑘 ≡ 1[3]. 
Ainsi, pour tout nombre 𝑛 = ∑ 𝑎𝑘 × 10𝑘𝑚−1

𝑘=0 , 
𝑛 est congru à ∑ 𝑎𝑘

𝑚−1
𝑘=0  modulo 3, c’est-à-dire à la somme de ses chiffres. 

b. De même, 10 ≡ 1[9].  
c. Plus compliqué : 10 ≡ −1[11] donc 10𝑘 ≡ (−1)𝑘[11]. 
Ainsi, pour tout nombre 𝑛 = ∑ 𝑎𝑘 × 10𝑘𝑚−1

𝑘=0 , 
𝑛 est congru module 11 à la somme alternée de ses chiffres : 

𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 … 
et 𝑛 est divisible par 11 si la somme alternée de ses chiffres l’est. 

Exemple 3 a. On effectue la division de 𝑛 par 10 : 𝑛 = 10𝑞 + 𝑟, 
où 𝑞 est le nombre de dizaines et 𝑟 le chiffre des unités. 
𝑛 ≡ 10𝑞 + 𝑟 ≡ 10𝑞 + 𝑟 − 7𝑞 ≡ 3𝑞 + 𝑟 ≡ 3𝑞 + 𝑟 − 7𝑟 ≡ 3𝑞 − 6𝑟 ≡ 3(𝑞 − 2𝑟)[7] 

Or 3(𝑞 − 2𝑟) est multiple de 7 si et seulement si (𝒒 − 𝟐𝒓) l’est. 
b. 57 − 4 × 2 = 49 donc 574 est divisible par 7. 
82 − 2 × 7 = 68 donc 827 n’est pas divisible par 7. 

charly-piva.fr


	1. Divisibilité
	1a. Définition
	1b. Premières applications
	1c. Équations diophantiennes
	1d. Division euclidienne

	2. Congruences
	2a. Définition
	2b. Opérations
	2c. Raisonnement par disjonction de cas
	2d. Critères de divisibilité


